I send data by python scripts use socket send the code like this:

import sys 
from socket import *


HOST = '192.168.1.117'                                                          
                                                                                
                                                                               
PORT =44444
BUFSIZ = 1024
ADDR = (HOST, PORT)

tcpCliSock = socket(AF_INET, SOCK_STREAM)
tcpCliSock.connect(ADDR)
i=0
for x in range(3):
    print x, "xx"
    n=tcpCliSock.send("test datas from flume")
tcpCliSock.close()





------------------ ???????? ------------------
??????: "Hari Shreedharan";<[email protected]>;
????????: 2015??5??14??(??????) ????10:53
??????: "[email protected]"<[email protected]>; 

????: Re: set flume send logs to hdfs error



How are you sending data to the Avro Source?


Thanks,
Hari



 
On Wed, May 13, 2015 at 7:38 PM, ?? <[email protected]> wrote:
hi all ,
 i'm want set flume send data to hdfs my configure file is lile this :
tier1.sources=source1  
tier1.channels=channel1  
tier1.sinks=sink1  

tier1.sources.source1.type=avro  
tier1.sources.source1.bind=0.0.0.0  
tier1.sources.source1.port=44444  
tier1.sources.source1.channels=channel1  

tier1.channels.channel1.type=memory  
tier1.channels.channel1.capacity=10000  
tier1.channels.channel1.transactionCapacity=1000  
tier1.channels.channel1.keep-alive=30  

tier1.sinks.sink1.type=hdfs  
tier1.sinks.sink1.channel=channel1  
tier1.sinks.sink1.hdfs.path=hdfs://hadoop-home.com:9000/user/hadoop/ 
tier1.sinks.sink1.hdfs.fileType=DataStream  
tier1.sinks.sink1.hdfs.writeFormat=Text  
tier1.sinks.sink1.hdfs.rollInterval=0  
tier1.sinks.sink1.hdfs.rollSize=10240  
tier1.sinks.sink1.hdfs.rollCount=0  
tier1.sinks.sink1.hdfs.idleTimeout=60  

when I start the flume by this configure file and send data to the port 44444 I 
get an error :
org.apache.avro.AvroRuntimeException: Excessively large list allocation request 
detected: 154218761 items! Connection closed;
dose anybody can help me ,thanks.

Reply via email to