Maybe your problem isn't related to Giraph and Yarn, look at this: http://stackoverflow.com/questions/22489398/unsupported-major-minor-version-52-0
You should look at what version of Giraph do you use for compiling it and compare with the version that you are using at runtime in the cluster. Bye -- *José Luis Larroque* Analista Programador Universitario - Facultad de Informática - UNLP Desarrollador Java y .NET en LIFIA 2017-02-17 2:56 GMT-03:00 Sai Ganesh Muthuraman <saiganesh...@gmail.com>: > Hi Jose, > > In fact, this is the running status of the application > > 17/02/16 21:52:27 INFO yarn.GiraphYarnClient: Giraph: > hu.elte.inf.mbalassi.msc.giraph.betweenness.BetweennessComputation, > Elapsed: 0.86 secs > 17/02/16 21:52:27 INFO yarn.GiraphYarnClient: > appattempt_1487310728133_0001_000001, State: ACCEPTED, Containers used: 1 > 17/02/16 21:52:31 INFO yarn.GiraphYarnClient: Giraph: > hu.elte.inf.mbalassi.msc.giraph.betweenness.BetweennessComputation, > Elapsed: 4.87 secs > 17/02/16 21:52:31 INFO yarn.GiraphYarnClient: > appattempt_1487310728133_0001_000001, State: RUNNING, Containers used: 3 > 17/02/16 21:52:35 INFO yarn.GiraphYarnClient: Cleaning up HDFS distributed > cache directory for Giraph job. > 17/02/16 21:52:35 INFO yarn.GiraphYarnClient: *Completed Giraph: > hu.elte.inf.mbalassi.msc.giraph.betweenness.BetweennessComputation: FAILED, > total running time: 0 minutes, 8 seconds.* > > What I had sent before were the logs/ > > > Sai Ganesh > > > > On Feb 17, 2017, at 10:53 AM, Sai Ganesh Muthuraman < > saiganesh...@gmail.com> wrote: > > Hi Jose, > > > As I said before, I am using the XSEDE comet cluster which has the > following specifications > > *Number of cores per node - 24* > *Memory per node - 128 GB* > The file system is NFS, hence there is nothing like number of disks per > machine. > I went through the previous discussions, but I could not get any clarity > with respect to my current needs. > I followed this link,* > http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.4.3/bk_installing_manually_book/content/determine-hdp-memory-config.html > <http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.4.3/bk_installing_manually_book/content/determine-hdp-memory-config.html>*, > but still I got exception like this (found in the userlogs) > > 2017-02-16 20:50:19,002 *ERROR [main] yarn.GiraphYarnTask > (GiraphYarnTask.java:main(187)) - GiraphYarnTask* threw a top-level > exception, failing task > java.lang.UnsupportedClassVersionError: hu/elte/inf/mbalassi/msc/ > giraph/betweenness/BetweennessComputation : Unsupported major.minor > version 52.0 > at java.lang.ClassLoader.defineClass1(Native Method) > at java.lang.ClassLoader.defineClass(ClassLoader.java:800) > at java.security.SecureClassLoader.defineClass( > SecureClassLoader.java:142) > at java.net.URLClassLoader.defineClass(URLClassLoader.java:449) > at java.net.URLClassLoader.access$100(URLClassLoader.java:71) > at java.net.URLClassLoader$1.run(URLClassLoader.java:361) > at java.net.URLClassLoader$1.run(URLClassLoader.java:355) > at java.security.AccessController.doPrivileged(Native Method) > at java.net.URLClassLoader.findClass(URLClassLoader.java:354) > at java.lang.ClassLoader.loadClass(ClassLoader.java:425) > at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:308) > at java.lang.ClassLoader.loadClass(ClassLoader.java:358) > at java.lang.Class.forName0(Native Method) > at java.lang.Class.forName(Class.java:278) > at org.apache.hadoop.conf.Configuration.getClassByNameOrNull( > Configuration.java:2013) > at org.apache.hadoop.conf.Configuration.getClassByName( > Configuration.java:1978) > at org.apache.hadoop.conf.Configuration.getClass( > Configuration.java:2072) > at org.apache.hadoop.conf.Configuration.getClass( > Configuration.java:2098) > at org.apache.giraph.conf.ClassConfOption.get( > ClassConfOption.java:128) > at org.apache.giraph.utils.ConfigurationUtils.getTypesHolderClass( > ConfigurationUtils.java:178) > at org.apache.giraph.conf.GiraphTypes.readFrom( > GiraphTypes.java:103) > at org.apache.giraph.conf.GiraphClasses.<init>( > GiraphClasses.java:161) > at org.apache.giraph.conf.ImmutableClassesGiraphConfigur > ation.<init>(ImmutableClassesGiraphConfiguration.java:138) > at org.apache.giraph.yarn.GiraphYarnTask.<init>( > GiraphYarnTask.java:76) > at org.apache.giraph.yarn.GiraphYarnTask.main( > GiraphYarnTask.java:182) > > In the yarn node manager logs, this is what I found, > > INFO > org.apache.hadoop.yarn.server.nodemanager.containermanager.monitor.ContainersMonitorImpl: > Memory usage of ProcessTree 4819 for container-id > container_1487306992058_0001_01_000002: 51.3 MB of 10 GB physical memory > used; 1.8 GB of 40 GB virtual memory used > 2017-02-16 20:50:19,027 WARN > org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor: > Exit code from container container_1487306992058_0001_01_000002 is : 2 > 2017-02-16 20:50:19,028 WARN > *org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor: > Exception from container-launch with container ID: > container_1487306992058_0001_01_000002 and exit code: 2* > *ExitCodeException exitCode=2:* > at org.apache.hadoop.util.Shell.runCommand(Shell.java:538) > at org.apache.hadoop.util.Shell.run(Shell.java:455) > at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute( > Shell.java:715) > at org.apache.hadoop.yarn.server.nodemanager. > DefaultContainerExecutor.launchContainer(DefaultContainerExecutor.java: > 211) > at org.apache.hadoop.yarn.server.nodemanager.containermanager. > launcher.ContainerLaunch.call(ContainerLaunch.java:302) > at org.apache.hadoop.yarn.server.nodemanager.containermanager. > launcher.ContainerLaunch.call(ContainerLaunch.java:82) > at java.util.concurrent.FutureTask.run(FutureTask.java:266) > at java.util.concurrent.ThreadPoolExecutor.runWorker( > ThreadPoolExecutor.java:1142) > at java.util.concurrent.ThreadPoolExecutor$Worker.run( > ThreadPoolExecutor.java:617) > at java.lang.Thread.run(Thread.java:745) > 2017-02-16 20:50:19,031 INFO > org.apache.hadoop.yarn.server.nodemanager.ContainerExecutor: > Exception from container-launch. > > I really have no idea, what the exact problem is. > > Sai Ganesh > > > > On Feb 17, 2017, at 6:18 AM, José Luis Larroque <user@giraph.apache.org> > wrote: > > Hi Sai, your question is like "the question" for using Giraph. > > Those resources depends on how much memory do you have on every node, it > depends if the cluster it's used for another user at the same time, depends > on the type of program that you are running, etc. Virtual memory can be > easily increased, but physical memory limit is a problem indeed. > > I recommend you to post how much memory do you have available on each node > of your cluster to yarn, and maybe someone can give you a more precise > advice on how to tune those parameters. > > You should look some old discussions about those values like this one: > https://www.mail-archive.com/user@giraph.apache.org/msg02628.html > > Bye > > -- > *José Luis Larroque* > Analista Programador Universitario - Facultad de Informática - UNLP > Desarrollador Java y .NET en LIFIA > > 2017-02-16 7:32 GMT-03:00 Sai Ganesh Muthuraman <saiganesh...@gmail.com>: > > Hi, > > I am trying to run a giraph application (computing betweenness centrality) > in the XSEDE comet cluster. But everytime I get some error relating to > container launch. Either the virtual memory or physical memory is running > out. > > > The avoid this, it looks like that the following parameters have to be set. > i) The maximum memory yarn can utilize on every node > ii) Breakup of total resources available into containers > iii) Physical RAM limit for each Map And Reduce task > iv) The JVM heap size limit for each task > v) The amount of virtual memory each task will get > > If I were to use *N nodes* for computation, and I want to use *W workers*, > what should the following parameters be? > > In mapred-site.xml > mapreduce.map.memory.mb > mapreduce.reduce.memory.mb > mapreduce.map.cpu.vcores > mapreduce.reduce.cpu.vcores > > In yarn-site.xml > yarn.nodemanager.resource.memory-mb > yarn.scheduler.minimum-allocation-mb > yarn.scheduler.minimum-allocation-vcores > yarn.scheduler.maximum-allocation-vcores > yarn.nodemanager.resource.cpu-vcores > > Sai Ganesh > > > > > > > >