Hi

The MyMap class extends and implements the same classes as the ones defined in 
the original wordcount example, but in my case I get the error of “Interface 
expected here”. I really don’t understand why I get this error. See my example 
below [1]. Any help here?
Can you please share the exception also

Is it possible to access the JobConf variable inside the map or reduce methods?
 map or reduce interface have setup(context), configuration can be got from 
context.getConfiguration(); Setup will be called once in  the beginning so you 
can set into the field in this method for further access


+ Naga

________________________________
From: xeonmailinglist [[email protected]]
Sent: Wednesday, September 02, 2015 20:58
To: [email protected]
Subject: Interface expected in the map definition?


I am setting my wordcount example, which is very similar to the Wordcount 
example that we find in the Internet.

  1.  The MyMap class extends and implements the same classes as the ones 
defined in the original wordcount example, but in my case I get the error of 
“Interface expected here”. I really don’t understand why I get this error. See 
my example below [1]. Any help here?

  2.  Is it possible to access the JobConf variable inside the map or reduce 
methods?

[1] My Wordcount example

package org.apache.hadoop.mapred.examples;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.ReduceContext;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.util.GenericOptionsParser;

import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.StringTokenizer;

/**
 * My example of a common wordcount. Compare with the official WordCount.class 
to understand the differences between both classes.
 */
public class MyWordCount {

    public static class MyMap extends MapReduceBase implements 
Mapper<LongWritable, Text, Text, IntWritable> { <<<< Interface expected here!!!
        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();

        public void map(LongWritable key, Text value, OutputCollector<Text, 
IntWritable> output, Reporter reporter) throws IOException {
            String line = value.toString();
            StringTokenizer tokenizer = new StringTokenizer(line);
            while (tokenizer.hasMoreTokens()) {
                word.set(tokenizer.nextToken());
                output.collect(word, one);
            }
        }
    }

 public static class MyReducer
            extends Reducer<Text,IntWritable,Text,IntWritable> {
        private IntWritable result = new IntWritable();
        MedusaDigests parser = new MedusaDigests();

        public void reduce(Text key, Iterable<IntWritable> values,
                           Context context
        ) throws IOException, InterruptedException {
            int sum = 0;
            for (IntWritable val : values) {
                System.out.println(" - key ( " + key.getClass().toString() + 
"): " + key.toString()
                        + " value ( " + val.getClass().toString() + " ): " + 
val.toString());
                sum += val.get();
            }
            result.set(sum);
            context.write(key, result);
        }

        public void run(Context context) throws IOException, 
InterruptedException {
            setup(context);
            try {
                while (context.nextKey()) {
                    System.out.println("Key: " + context.getCurrentKey());
                    reduce(context.getCurrentKey(), context.getValues(), 
context);
                    // If a back up store is used, reset it
                    Iterator<IntWritable> iter = context.getValues().iterator();
                    if(iter instanceof ReduceContext.ValueIterator) {
                        
((ReduceContext.ValueIterator<IntWritable>)iter).resetBackupStore();
                    }
                }
            } finally {
                cleanup(context);
            }
        }

        protected void cleanup(Context context)
                throws IOException, InterruptedException {
            parser.cleanup(context);
        }
    }

    /** Identity mapper set by the user. */
    public static class MyFullyIndentityMapper
            extends Mapper<Object, Text, Text, IntWritable>{

        private Text word = new Text();
        private IntWritable val = new IntWritable();

        public void map(Object key, Text value, Context context
        ) throws IOException, InterruptedException {

            StringTokenizer itr = new StringTokenizer(value.toString());
            word.set(itr.nextToken());
            val.set(Integer.valueOf(itr.nextToken()));
            context.write(word, val);
        }

        public void run(Context context) throws IOException, 
InterruptedException {
            setup(context);
            try {
                while (context.nextKeyValue()) {
                    System.out.println("Key ( " + 
context.getCurrentKey().getClass().getName() + " ): " + context.getCurrentKey()
                            + " Value (" + 
context.getCurrentValue().getClass().getName() + "): " + 
context.getCurrentValue());
                    map(context.getCurrentKey(), context.getCurrentValue(), 
context);
                }
            } finally {
                cleanup(context);
            }
        }
    }

    public static void main(String[] args) throws Exception {
        GenericOptionsParser parser = new GenericOptionsParser(new 
Configuration(), args);

        String[] otherArgs = parser.getRemainingArgs();
        if (otherArgs.length < 2) {
            System.err.println("Usage: wordcount [<in>...] <out>");
            System.exit(2);
        }

        // path that contains the file with all attributes necessary to the 
execution of the job
        Medusa execution = new Medusa(args);

        // first map tasks
        JobConf conf = new JobConf(MyWordCount.class);
        conf.setJobName("wordcount");
        conf.setClass("mapreduce.job.map.identity.class", 
MyFullyIndentityMapper.class, Mapper.class);
        System.out.println(conf.toString());

        conf.setJarByClass(MyWordCount.class);
        conf.setMapperClass(MyMap.class);
        conf.setPartitionerClass(MyHashPartitioner.class);
        conf.setReducerClass(MyReducer.class);
        conf.setOutputKeyClass(Text.class);
        conf.setOutputValueClass(IntWritable.class);
        conf.setNumReduceTasks(1);

        List<Path> inputPaths = new ArrayList<Path>();
        for (int i = 0; i < otherArgs.length - 1; ++i) {
            inputPaths.add(new Path(otherArgs[i]));
        }
        Path outputPath =  new Path(otherArgs[otherArgs.length - 1]);
        execution.setInputPath(inputPaths);
        execution.setOutputPath(outputPath);

        // launch the job directly
        execution.submit(new Job(conf));
    }
}


​

Reply via email to