The default configuration for spark is very small; You need to tweak some
parameters (like below) or enable Spark dynamic resource allocation;

kylin.engine.spark-conf.spark.executor.memory=1G
kylin.engine.spark-conf.spark.executor.cores=2
kylin.engine.spark-conf.spark.executor.instances=1

If you already took these actions, the performance still not good, then you
need a deep tunning.

2018-02-06 12:43 GMT+08:00 Kumar, Manoj H <[email protected]>:

> While running Spark Cube process, I noticed that this is taking other Cube
> tables into the consideration , Rather it should take the cube which it
> isdoing. Not sure why its taking data model of other cubes. Normally its
> being noticed that Spark is taking almost same time as Maprecuce is taking.
> We assume that Spark should be faster than MR jobs.
>
>
>
>
>
>
>
> 2018-02-05 23:35:07,825 INFO  [Job 53f2a470-2973-46ad-9d97-8ddcec1933cc-315]
> spark.SparkExecutable:38 : 18/02/05 23:35:07 WARN CubeDescManager: Broken
> cube desc /cube_desc/FRI_CUBE_update.json
>
> 2018-02-05 23:35:07,825 INFO  [Job 53f2a470-2973-46ad-9d97-8ddcec1933cc-315]
> spark.SparkExecutable:38 : java.lang.IllegalArgumentException: Table not
> found by LOAN_POSITION_BAL_009_SS1
>
> 2018-02-05 23:35:07,825 INFO  [Job 53f2a470-2973-46ad-9d97-8ddcec1933cc-315]
> spark.SparkExecutable:38 :         at org.apache.kylin.metadata.
> model.DataModelDesc.findTable(DataModelDesc.java:314)
>
> 2018-02-05 23:35:07,826 INFO  [Job 53f2a470-2973-46ad-9d97-8ddcec1933cc-315]
> spark.SparkExecutable:38 :         at org.apache.kylin.cube.model.
> DimensionDesc.init(DimensionDesc.java:61)
>
> 2018-02-05 23:35:07,826 INFO  [Job 53f2a470-2973-46ad-9d97-8ddcec1933cc-315]
> spark.SparkExecutable:38 :         at org.apache.kylin.cube.model.
> CubeDesc.init(CubeDesc.java:587)
>
> 2018-02-05 23:35:07,826 INFO  [Job 53f2a470-2973-46ad-9d97-8ddcec1933cc-315]
> spark.SparkExecutable:38 :         at org.apache.kylin.cube.
> CubeDescManager.loadCubeDesc(CubeDescManager.java:196)
>
> 2018-02-05 23:35:07,826 INFO  [Job 53f2a470-2973-46ad-9d97-8ddcec1933cc-315]
> spark.SparkExecutable:38 :         at org.apache.kylin.cube.
> CubeDescManager.reloadAllCubeDesc(CubeDescManager.java:321)
>
> 2018-02-05 23:35:07,826 INFO  [Job 53f2a470-2973-46ad-9d97-8ddcec1933cc-315]
> spark.SparkExecutable:38 :         at org.apache.kylin.cube.
> CubeDescManager.<init>(CubeDescManager.java:114)
>
> 2018-02-05 23:35:07,827 INFO  [Job 53f2a470-2973-46ad-9d97-8ddcec1933cc-315]
> spark.SparkExecutable:38 :         at org.apache.kylin.cube.
> CubeDescManager.getInstance(CubeDescManager.java:81)
>
> 2018-02-05 23:35:07,827 INFO  [Job 53f2a470-2973-46ad-9d97-8ddcec1933cc-315]
> spark.SparkExecutable:38 :         at org.apache.kylin.cube.
> CubeManager.reloadCubeLocalAt(CubeManager.java:811)
>
> 2018-02-05 23:35:07,827 INFO  [Job 53f2a470-2973-46ad-9d97-8ddcec1933cc-315]
> spark.SparkExecutable:38 :         at org.apache.kylin.cube.CubeManager.
> loadAllCubeInstance(CubeManager.java:789)
>
> 2018-02-05 23:35:07,827 INFO  [Job 53f2a470-2973-46ad-9d97-8ddcec1933cc-315]
> spark.SparkExecutable:38 :         at org.apache.kylin.cube.
> CubeManager.<init>(CubeManager.java:147)
>
> 2018-02-05 23:35:07,827 INFO  [Job 53f2a470-2973-46ad-9d97-8ddcec1933cc-315]
> spark.SparkExecutable:38 :         at org.apache.kylin.cube.
> CubeManager.getInstance(CubeManager.java:105)
>
> 2018-02-05 23:35:07,827 INFO  [Job 53f2a470-2973-46ad-9d97-8ddcec1933cc-315]
> spark.SparkExecutable:38 :         at org.apache.kylin.engine.spark.
> SparkCubingByLayer.execute(SparkCubingByLayer.java:161)
>
> 2018-02-05 23:35:07,828 INFO  [Job 53f2a470-2973-46ad-9d97-8ddcec1933cc-315]
> spark.SparkExecutable:38 :         at org.apache.kylin.common.util.
> AbstractApplication.execute(AbstractApplication.java:37)
>
> 2018-02-05 23:35:07,828 INFO  [Job 53f2a470-2973-46ad-9d97-8ddcec1933cc-315]
> spark.SparkExecutable:38 :         at org.apache.kylin.common.util.
> SparkEntry.main(SparkEntry.java:44)
>
> 2018-02-05 23:35:07,828 INFO  [Job 53f2a470-2973-46ad-9d97-8ddcec1933cc-315]
> spark.SparkExecutable:38 :         at sun.reflect.
> NativeMethodAccessorImpl.invoke0(Native Method)
>
> 2018-02-05 23:35:07,828 INFO  [Job 53f2a470-2973-46ad-9d97-8ddcec1933cc-315]
> spark.SparkExecutable:38 :         at sun.reflect.
> NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
>
> 2018-02-05 23:35:07,828 INFO  [Job 53f2a470-2973-46ad-9d97-8ddcec1933cc-315]
> spark.SparkExecutable:38 :         at sun.reflect.
> DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
>
> 2018-02-05 23:35:07,829 INFO  [Job 53f2a470-2973-46ad-9d97-8ddcec1933cc-315]
> spark.SparkExecutable:38 :         at java.lang.reflect.Method.
> invoke(Method.java:606)
>
> 2018-02-05 23:35:07,829 INFO  [Job 53f2a470-2973-46ad-9d97-8ddcec1933cc-315]
> spark.SparkExecutable:38 :         at org.apache.spark.deploy.
> SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$r
>
>
>
> Regards,
>
> Manoj
>
>
>
> This message is confidential and subject to terms at: http://
> www.jpmorgan.com/emaildisclaimer including on confidentiality, legal
> privilege, viruses and monitoring of electronic messages. If you are not
> the intended recipient, please delete this message and notify the sender
> immediately. Any unauthorized use is strictly prohibited.
>



-- 
Best regards,

Shaofeng Shi 史少锋

Reply via email to