Hi All,

I noticed that MADlib provides a mini-batch preprocessor (
https://madlib.apache.org/docs/latest/group__grp__minibatch__preprocessing.html)
for Neural Networks.

I'm wondering if this mini-batch processor can work with the linear models
such as SVM and LR (i.e., mini-batch SGD).

I just used this mini-batch preprocessor on a dataset and got the batched
table as follows. When I performed the SVM on it, I encountered an error as
'SVM error: dependent_varname cannot be of array type!'. It seems that SVM
does not work on this batched table.

------------------------------------------------------------
db=# \d susy_b128
                         Table "public.susy_b128"
       Column        |        Type        | Collation | Nullable | Default
---------------------+--------------------+-----------+----------+---------
 __id__              | bigint             |           |          |
 dependent_varname   | double precision[] |           |          |
 independent_varname | double precision[] |           |          |

db=# SELECT madlib.svm_classification('susy_b128', 'susy_b128_out',
'dependent_varname', 'independent_varname', 'linear', '', '',
'init_stepsize=0.1, decay_factor=0.95, max_iter=3, tolerance=0, lambda=0');
ERROR:  plpy.Error: SVM error: dependent_varname cannot be of array type!
------------------------------------------------------------

Any suggestions are welcome! Thanks!

Best,
Lijie

Reply via email to