Hi All, I noticed that MADlib provides a mini-batch preprocessor ( https://madlib.apache.org/docs/latest/group__grp__minibatch__preprocessing.html) for Neural Networks.
I'm wondering if this mini-batch processor can work with the linear models such as SVM and LR (i.e., mini-batch SGD). I just used this mini-batch preprocessor on a dataset and got the batched table as follows. When I performed the SVM on it, I encountered an error as 'SVM error: dependent_varname cannot be of array type!'. It seems that SVM does not work on this batched table. ------------------------------------------------------------ db=# \d susy_b128 Table "public.susy_b128" Column | Type | Collation | Nullable | Default ---------------------+--------------------+-----------+----------+--------- __id__ | bigint | | | dependent_varname | double precision[] | | | independent_varname | double precision[] | | | db=# SELECT madlib.svm_classification('susy_b128', 'susy_b128_out', 'dependent_varname', 'independent_varname', 'linear', '', '', 'init_stepsize=0.1, decay_factor=0.95, max_iter=3, tolerance=0, lambda=0'); ERROR: plpy.Error: SVM error: dependent_varname cannot be of array type! ------------------------------------------------------------ Any suggestions are welcome! Thanks! Best, Lijie