What you want is a recommender that is based mostly on the item with a small
admixture of the user history.  Essentially, it is a user recommendation
with a very bit weight on the current item.

On Mon, Sep 20, 2010 at 7:34 PM, Sam Yang <[email protected]> wrote:

> Here is Item-based Recommender Example:
> =====
> public class ItemBasedRecommender implements Recommender {
>
>    private final Recommender recommender;
>
>    public ItemBasedRecommender() throws IOException, TasteException {
>        this(new MovieDataModel());
>    }
>
>    public ItemBasedRecommender(DataModel dataModel) throws TasteException {
>
>        Collection<GenericItemSimilarity.ItemItemSimilarity> correlations =
>            MovieSimilarityTable.getAllMovieSimilarities();
>        ItemSimilarity itemSimilarity = new
> GenericItemSimilarity(correlations);
>        recommender = new CachingRecommender(new
> EmbededItemBasedRecommender(
>            new GenericItemBasedRecommender(dataModel, itemSimilarity)));
>    }
>
>    public List<RecommendedItem> recommend(long userID, int howMany)
>        throws TasteException {
>        return recommender.recommend(userID, howMany);
>    }
>
> .........
>
>    //EmbededItemBasedRecommender类的定义
>    private static final class EmbededItemBasedRecommender implements
> Recommender {
>
>        //包含一个GenericItemBasedRecommender实例;
>        private final GenericItemBasedRecommender recommender;
>
>        private EmbededItemBasedRecommender(GenericItemBasedRecommender
> recommender) {
>            this.recommender = recommender;
>        }
>
>        public List<RecommendedItem> recommend(long userID,  int howMany,
>            Rescorer<Long> rescorer)
>            throws TasteException {
>            FastIDSet itemIDs =
> recommender.getDataModel().getItemIDsFromUser(userID);
>            return recommender.mostSimilarItems(itemIDs.toArray(), howMany,
> null);
>        }
>
>    ........
>
> }
> ======
> The parameters of recommend method are userID and howMany,not include
> itemID,so I think for one user and every item,the recommendations are same.
>
> On Mon, Sep 20, 2010 at 11:34 PM, Sebastian Schelter <[email protected]>
> wrote:
>
> > Sam,
> >
> > can you provide an example and a little more details about your data and
> > the implementations you use?
> >
> > --sebastian
> >
> > Am 20.09.2010 17:28, schrieb Sam Yang:
> > > All:
> > > When I use Item-based recommender to do recommendation for user,but for
> > each
> > > item,the recommendations are same.
> > > Is there some way to return different recommendations for different
> item?
> > >
> > > And,my story is when one user loggined, show recommendations on item
> > detail
> > > page,can these recommendations are different for each item?
> > >
> > >
> >
> >
>
>
> --
> I'm samsam.
>

Reply via email to