-------- Forwarding messages --------
From: chengji_zhaxn <[email protected]>
Date: 2012-12-19 17:13:51
To: [email protected]
Subject: Hello Sean, I have 2 questions about some of your algorithms model in 
the mahout src

Hello Sean, 
This is Zha Chengji,
I am a graduate major in School of Information and Communication Engeering,
I come from Beijing University of Posts and Telecommunications, Beijing.
Recently I am doing some KDD work in my lab with your fabulous mahout
but unfortuntaly I have 2 questions about some of your algorithms model in the 
mahout src:mahout-distribution-0.6


Question 1:
In the package, org.apache.mahout.clustering.kmeans of mahout-core, I find that 
the RandomSeedGenerator couldn't implement of generating the random seed. The 
test data, iris_konge.txt which is from UCI has 150 records. By using the 
RandomSeedGenerator, I can get only the most of the random seeds coming from 
the tail of the iris_kongge.txt. And the first 3 files of the enclosures, are 
my test data and result. The command I used in the Linux enviroment is hadoop 
jar org.apache.mahout.clustering.syntheticcontrol.kmeans.Job (running with 
default arguments), and k of k-means is 6.


Question 2:
In the package, org.apache.mahout.math.hadoop of mahout-core, I find that 
MatrixMultiplicationJob occassionally can't get the right result. And My 
testdata is in the tail of my enclosre, and its format is SequenceFile. I can 
breifly describe my question.
The input matrix is as follows
1 0 0 0 1
0 1 1 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1
But when input matrix multiplies itself, the result matrix is as follows
1 0 0 0 1
0 1 1 0 0
0 1 2 1 0
0 0 1 2 0
1 0 0 0 2
Obiviously, it is the wrong answer.


I think very highly of the mahout and appreciate your big contirbution to the 
mahout.
Thank you from my bottom of heart.
I am looking forward to your reply.


sincerely yours
Zha Chengji(Kelvin)
School of Information and Communication Engeering
Beijing Universtiy of Posts and Telecommunications
2012-12-19 17:17 pm Beijing


5.1 3.5 1.4 0.2
4.9 3.0 1.4 0.2
4.7 3.2 1.3 0.2
4.6 3.1 1.5 0.2
5.0 3.6 1.4 0.2
5.4 3.9 1.7 0.4
4.6 3.4 1.4 0.3
5.0 3.4 1.5 0.2
4.4 2.9 1.4 0.2
4.9 3.1 1.5 0.1
5.4 3.7 1.5 0.2
4.8 3.4 1.6 0.2
4.8 3.0 1.4 0.1
4.3 3.0 1.1 0.1
5.8 4.0 1.2 0.2
5.7 4.4 1.5 0.4
5.4 3.9 1.3 0.4
5.1 3.5 1.4 0.3
5.7 3.8 1.7 0.3
5.1 3.8 1.5 0.3
5.4 3.4 1.7 0.2
5.1 3.7 1.5 0.4
4.6 3.6 1.0 0.2
5.1 3.3 1.7 0.5
4.8 3.4 1.9 0.2
5.0 3.0 1.6 0.2
5.0 3.4 1.6 0.4
5.2 3.5 1.5 0.2
5.2 3.4 1.4 0.2
4.7 3.2 1.6 0.2
4.8 3.1 1.6 0.2
5.4 3.4 1.5 0.4
5.2 4.1 1.5 0.1
5.5 4.2 1.4 0.2
4.9 3.1 1.5 0.1
5.0 3.2 1.2 0.2
5.5 3.5 1.3 0.2
4.9 3.1 1.5 0.1
4.4 3.0 1.3 0.2
5.1 3.4 1.5 0.2
5.0 3.5 1.3 0.3
4.5 2.3 1.3 0.3
4.4 3.2 1.3 0.2
5.0 3.5 1.6 0.6
5.1 3.8 1.9 0.4
4.8 3.0 1.4 0.3
5.1 3.8 1.6 0.2
4.6 3.2 1.4 0.2
5.3 3.7 1.5 0.2
5.0 3.3 1.4 0.2
7.0 3.2 4.7 1.4
6.4 3.2 4.5 1.5
6.9 3.1 4.9 1.5
5.5 2.3 4.0 1.3
6.5 2.8 4.6 1.5
5.7 2.8 4.5 1.3
6.3 3.3 4.7 1.6
4.9 2.4 3.3 1.0
6.6 2.9 4.6 1.3
5.2 2.7 3.9 1.4
5.0 2.0 3.5 1.0
5.9 3.0 4.2 1.5
6.0 2.2 4.0 1.0
6.1 2.9 4.7 1.4
5.6 2.9 3.6 1.3
6.7 3.1 4.4 1.4
5.6 3.0 4.5 1.5
5.8 2.7 4.1 1.0
6.2 2.2 4.5 1.5
5.6 2.5 3.9 1.1
5.9 3.2 4.8 1.8
6.1 2.8 4.0 1.3
6.3 2.5 4.9 1.5
6.1 2.8 4.7 1.2
6.4 2.9 4.3 1.3
6.6 3.0 4.4 1.4
6.8 2.8 4.8 1.4
6.7 3.0 5.0 1.7
6.0 2.9 4.5 1.5
5.7 2.6 3.5 1.0
5.5 2.4 3.8 1.1
5.5 2.4 3.7 1.0
5.8 2.7 3.9 1.2
6.0 2.7 5.1 1.6
5.4 3.0 4.5 1.5
6.0 3.4 4.5 1.6
6.7 3.1 4.7 1.5
6.3 2.3 4.4 1.3
5.6 3.0 4.1 1.3
5.5 2.5 4.0 1.3
5.5 2.6 4.4 1.2
6.1 3.0 4.6 1.4
5.8 2.6 4.0 1.2
5.0 2.3 3.3 1.0
5.6 2.7 4.2 1.3
5.7 3.0 4.2 1.2
5.7 2.9 4.2 1.3
6.2 2.9 4.3 1.3
5.1 2.5 3.0 1.1
5.7 2.8 4.1 1.3
6.3 3.3 6.0 2.5
5.8 2.7 5.1 1.9
7.1 3.0 5.9 2.1
6.3 2.9 5.6 1.8
6.5 3.0 5.8 2.2
7.6 3.0 6.6 2.1
4.9 2.5 4.5 1.7
7.3 2.9 6.3 1.8
6.7 2.5 5.8 1.8
7.2 3.6 6.1 2.5
6.5 3.2 5.1 2.0
6.4 2.7 5.3 1.9
6.8 3.0 5.5 2.1
5.7 2.5 5.0 2.0
5.8 2.8 5.1 2.4
6.4 3.2 5.3 2.3
6.5 3.0 5.5 1.8
7.7 3.8 6.7 2.2
7.7 2.6 6.9 2.3
6.0 2.2 5.0 1.5
6.9 3.2 5.7 2.3
5.6 2.8 4.9 2.0
7.7 2.8 6.7 2.0
6.3 2.7 4.9 1.8
6.7 3.3 5.7 2.1
7.2 3.2 6.0 1.8
6.2 2.8 4.8 1.8
6.1 3.0 4.9 1.8
6.4 2.8 5.6 2.1
7.2 3.0 5.8 1.6
7.4 2.8 6.1 1.9
7.9 3.8 6.4 2.0
6.4 2.8 5.6 2.2
6.3 2.8 5.1 1.5
6.1 2.6 5.6 1.4
7.7 3.0 6.1 2.3
6.3 3.4 5.6 2.4
6.4 3.1 5.5 1.8
6.0 3.0 4.8 1.8
6.9 3.1 5.4 2.1
6.7 3.1 5.6 2.4
6.9 3.1 5.1 2.3
5.8 2.7 5.1 1.9
6.8 3.2 5.9 2.3
6.7 3.3 5.7 2.5
6.7 3.0 5.2 2.3
6.3 2.5 5.0 1.9
6.5 3.0 5.2 2.0
6.2 3.4 5.4 2.3
5.9 3.0 5.1 1.8

Reply via email to