Hello,
I have the same problem described above using spark-rowsimilarity.
I have a ~65k lines input file (each row with less than 300 items),
and I run the job on a small cluster with 1 master and 2 workers, each
machine has 15GB of RAM.
I tried to increase executor and driver memory:
--sparkExecutorMem 15g
-D:spark.driver.memory=15g

but I get the OutOfMemoryError exception:

16/02/13 13:00:36 ERROR Executor: Exception in task 0.0 in stage 12.0 (TID 12)
java.lang.OutOfMemoryError: GC overhead limit exceeded
        at 
org.apache.mahout.math.OrderedIntDoubleMapping.growTo(OrderedIntDoubleMapping.java:86)
        at 
org.apache.mahout.math.OrderedIntDoubleMapping.set(OrderedIntDoubleMapping.java:118)
[...]

Thanks for any hint.
Angelo

On Fri, Feb 12, 2016 at 10:15 PM, Pat Ferrel <p...@occamsmachete.com> wrote:
> You have to set the executor memory. BTW you have given the driver all memory 
> on the machine.
>
>> On Feb 10, 2016, at 9:30 AM, Jaume Galí <jg...@konodrac.com> wrote:
>>
>> Hi again,
>> (Sorry for my delay but we didn’t have machine to test your thoughts about 
>> memory issue.)
>>
>> The problem still happening testing with an input matrix of 100k rows by 300 
>> items, I increase memory as you suggest but nothing changed. I attached 
>> spark_env.sh and new specs of machine
>>
>> Machine specs:
>>
>> m3.xlarge AWS (Ivy Bridge, 15Gb ram, 2x40gb HD)
>>
>> This is my spark-env.sh:
>>
>>          #!/usr/bin/env bash
>> # Licensed to ...
>>
>> export SPARK_HOME=${SPARK_HOME:-/usr/lib/spark}
>> export SPARK_LOG_DIR=${SPARK_LOG_DIR:-/var/log/spark}
>> export HADOOP_HOME=${HADOOP_HOME:-/usr/lib/hadoop}
>> export HADOOP_CONF_DIR=${HADOOP_CONF_DIR:-/etc/hadoop/conf}
>> export HIVE_CONF_DIR=${HIVE_CONF_DIR:-/etc/hive/conf}
>>
>> export STANDALONE_SPARK_MASTER_HOST=ip-10-12-17-235.eu 
>> <http://ip-10-12-17-235.eu/>-west-1.compute.internal
>> export SPARK_MASTER_PORT=7077
>> export SPARK_MASTER_IP=$STANDALONE_SPARK_MASTER_HOST
>> export SPARK_MASTER_WEBUI_PORT=8080
>>
>> export SPARK_WORKER_DIR=${SPARK_WORKER_DIR:-/var/run/spark/work}
>> export SPARK_WORKER_PORT=7078
>> export SPARK_WORKER_WEBUI_PORT=8081
>>
>> export HIVE_SERVER2_THRIFT_BIND_HOST=0.0.0.0
>> export HIVE_SERVER2_THRIFT_PORT=10001
>>
>> export SPARK_DRIVER_MEMORY=15G
>> export SPARK_DAEMON_JAVA_OPTS="$SPARK_DAEMON_JAVA_OPTS 
>> -XX:OnOutOfMemoryError='kill -9 %p’”
>>
>> Log:
>>
>> Exception in thread "main" org.apache.spark.SparkException: Job aborted due 
>> to stage failure: Task 0 in stage 12.0 failed 1 times, most recent failure: 
>> Lost task 0.0 in stage 12.0 (TID 24, localhost): java.lang.OutOfMemoryError: 
>> GC overhead limit exceeded
>> …….
>> …..
>> ..
>> .
>>
>> Driver stacktrace:
>> Caused by: java.lang.OutOfMemoryError: GC overhead limit exceeded
>> …….
>> …..
>> ...
>> ..
>> .
>>
>>
>> Thanks for advance
>>
>>> El 2/2/2016, a las 7:48, Pat Ferrel <p...@occamsmachete.com 
>>> <mailto:p...@occamsmachete.com>> escribió:
>>>
>>> You probably need to increase your driver memory and 8g will not work. 16g 
>>> is probably the smallest stand alone machine that will work since the 
>>> driver and executors run on it.
>>>
>>>> On Feb 1, 2016, at 1:24 AM, jg...@konodrac.com <mailto:jg...@konodrac.com> 
>>>> wrote:
>>>>
>>>> Hello everybody,
>>>>
>>>> We are experimenting problems when we use "mahout spark-rowsimilarity” 
>>>> operation. We have an input matrix with 100k rows and 100 items and 
>>>> process throws an exception about “Exception in task 0.0 in stage 13.0 
>>>> (TID 13) java.lang.OutOfMemoryError: Java heap space” and we try to 
>>>> increase JAVA HEAP MEMORY, MAHOUT HEAP MEMORY and spark.driver.memory.
>>>>
>>>> Environment versions:
>>>> Mahout: 0.11.1
>>>> Spark: 1.6.0.
>>>>
>>>> Mahout command line:
>>>>     /opt/mahout/bin/mahout spark-rowsimilarity -i 50k_rows__50items.dat -o 
>>>> test_output.tmp --maxObservations 500 --maxSimilaritiesPerRow 100 
>>>> --omitStrength --master local --sparkExecutorMem 8g
>>>>
>>>> This process is running on a machine with following specifications:
>>>> Mem RAM: 8gb
>>>> CPU with 8 cores
>>>>
>>>> .profile file:
>>>> export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-amd64
>>>> export HADOOP_HOME=/opt/hadoop-2.6.0
>>>> export SPARK_HOME=/opt/spark
>>>> export MAHOUT_HOME=/opt/mahout
>>>> export MAHOUT_HEAPSIZE=8192
>>>>
>>>> Throws exception:
>>>>
>>>> 16/01/22 11:45:06 ERROR Executor: Exception in task 0.0 in stage 13.0 (TID 
>>>> 13)
>>>> java.lang.OutOfMemoryError: Java heap space
>>>>      at org.apache.mahout.math.DenseMatrix.<init>(DenseMatrix.java:66)
>>>>      at 
>>>> org.apache.mahout.sparkbindings.drm.package$$anonfun$blockify$1.apply(package.scala:70)
>>>>      at 
>>>> org.apache.mahout.sparkbindings.drm.package$$anonfun$blockify$1.apply(package.scala:59)
>>>>      at 
>>>> org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710)
>>>>      at 
>>>> org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710)
>>>>      at 
>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>>>>      at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
>>>>      at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
>>>>      at 
>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>>>>      at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
>>>>      at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
>>>>      at 
>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>>>>      at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
>>>>      at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
>>>>      at 
>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>>>>      at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
>>>>      at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
>>>>      at 
>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>>>>      at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
>>>>      at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
>>>>      at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
>>>>      at org.apache.spark.scheduler.Task.run(Task.scala:89)
>>>>      at 
>>>> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
>>>>      at 
>>>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>>>>      at 
>>>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>>>>      at java.lang.Thread.run(Thread.java:745)
>>>> 16/01/22 11:45:06 WARN NettyRpcEndpointRef: Error sending message [message 
>>>> = Heartbeat(driver,[Lscala.Tuple2;@12498227,BlockManagerId(driver, 
>>>> localhost, 42107))] in 1 attempts
>>>> org.apache.spark.rpc.RpcTimeoutException: Futures timed out after [120 
>>>> seconds]. This timeout is controlled by spark.rpc.askTimeout
>>>>      at 
>>>> org.apache.spark.rpc.RpcTimeout.org$apache$spark$rpc$RpcTimeout$$createRpcTimeoutException(RpcTimeout.scala:48)
>>>>      at 
>>>> org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:63)
>>>>      at 
>>>> org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59)
>>>>      at 
>>>> scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:33)
>>>>      at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:76)
>>>>      at 
>>>> org.apache.spark.rpc.RpcEndpointRef.askWithRetry(RpcEndpointRef.scala:101)
>>>>      at 
>>>> org.apache.spark.rpc.RpcEndpointRef.askWithRetry(RpcEndpointRef.scala:77)
>>>>      at 
>>>> org.apache.spark.executor.Executor.org$apache$spark$executor$Executor$$reportHeartBeat(Executor.scala:448)
>>>>      at 
>>>> org.apache.spark.executor.Executor$$anon$1$$anonfun$run$1.apply$mcV$sp(Executor.scala:468)
>>>>      at 
>>>> org.apache.spark.executor.Executor$$anon$1$$anonfun$run$1.apply(Executor.scala:468)
>>>>      at 
>>>> org.apache.spark.executor.Executor$$anon$1$$anonfun$run$1.apply(Executor.scala:468)
>>>>      at 
>>>> org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1741)
>>>>      at org.apache.spark.executor.Executor$$anon$1.run(Executor.scala:468)
>>>>      at 
>>>> java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471)
>>>>      at java.util.concurrent.FutureTask.runAndReset(FutureTask.java:304)
>>>>      at 
>>>> java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$301(ScheduledThreadPoolExecutor.java:178)
>>>>      at 
>>>> java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:293)
>>>>      at 
>>>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>>>>      at 
>>>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>>>>      at java.lang.Thread.run(Thread.java:745)
>>>> 16/01/22 11:45:06 WARN NettyRpcEndpointRef: Error sending message [message 
>>>> = Heartbeat(driver,[Lscala.Tuple2;@12498227,BlockManagerId(driver, 
>>>> localhost, 42107))] in 1 attempts
>>>> org.apache.spark.rpc.RpcTimeoutException: Futures timed out after [120 
>>>> seconds]. This timeout is controlled by spark.rpc.askTimeout
>>>>      at 
>>>> org.apache.spark.rpc.RpcTimeout.org$apache$spark$rpc$RpcTimeout$$createRpcTimeoutException(RpcTimeout.scala:48)
>>>>      at 
>>>> org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:63)
>>>>      at 
>>>> org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59)
>>>>      at 
>>>> scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:33)
>>>>      at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:76)
>>>>      at 
>>>> org.apache.spark.rpc.RpcEndpointRef.askWithRetry(RpcEndpointRef.scala:101)
>>>>      at 
>>>> org.apache.spark.rpc.RpcEndpointRef.askWithRetry(RpcEndpointRef.scala:77)
>>>>      at 
>>>> org.apache.spark.executor.Executor.org$apache$spark$executor$Executor$$reportHeartBeat(Executor.scala:448)
>>>>      at 
>>>> org.apache.spark.executor.Executor$$anon$1$$anonfun$run$1.apply$mcV$sp(Executor.scala:468)
>>>>      at 
>>>> org.apache.spark.executor.Executor$$anon$1$$anonfun$run$1.apply(Executor.scala:468)
>>>>      at 
>>>> org.apache.spark.executor.Executor$$anon$1$$anonfun$run$1.apply(Executor.scala:468)
>>>>      at 
>>>> org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1741)
>>>>      at org.apache.spark.executor.Executor$$anon$1.run(Executor.scala:468)
>>>>      at 
>>>> java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471)
>>>>      at java.util.concurrent.FutureTask.runAndReset(FutureTask.java:304)
>>>>      at 
>>>> java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$301(ScheduledThreadPoolExecutor.java:178)
>>>>      at 
>>>> java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:293)
>>>>      at 
>>>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>>>>      at 
>>>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>>>>      at java.lang.Thread.run(Thread.java:745)
>>>> Caused by: java.util.concurrent.TimeoutException: Futures timed out after 
>>>> [120 seconds]
>>>>      at 
>>>> scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:219)
>>>>      at 
>>>> scala.concurrent.impl.Promise$DefaultPromise.result(Promise.scala:223)
>>>>      at scala.concurrent.Await$$anonfun$result$1.apply(package.scala:107)
>>>>      at 
>>>> scala.concurrent.BlockContext$DefaultBlockContext$.blockOn(BlockContext.scala:53)
>>>>      at scala.concurrent.Await$.result(package.scala:107)
>>>>      at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:75)
>>>>      ...
>>>>
>>>> Can you please advise?
>>>>
>>>>
>>>> Thanks for advance.
>>>> Cheers.
>>>
>>
>

Reply via email to