Thanks guys so much for all the help - I was able to get this scenario to work !
Now that I got this to work I am a little bit curious to see if I can explore more on my initial question re disk space utilization. Providing more specifics - yes I was using YARN and my table had about a billion rows and 22 columns. Specifically I would see several map jobs starting and completing successfully. Reducers (all 9 of them) would start processing the output of these map jobs but at a certain stage (75% map completion, 99% map completion depending on my number of nodes) the non DFS disk space utilized reached a critical stage eventually making the node unusable; thus killing off all the map and reduce jobs that were on that node and restarting them; it then proceeded to eat up memory on the other node one by one to the extent that progress receded to 0% eventually. Of course all this disappeared and worked smoothly when I switched from using datanodes with VMs having 800G disk space rather than 400G disk space - but the fact is on this kind of workload there is a point at which a total of more than 3.2 GB temp space is required. I will of course look at using compression of map output - but just wanted to check if this is expected behavior on workloads of this size. Thanks Gaurav On 16 September 2015 at 12:21, Gaurav Kanade <gaurav.kan...@gmail.com> wrote: > Thanks for the pointers Gabriel! Will give it a shot now! > > On 16 September 2015 at 12:15, Gabriel Reid <gabriel.r...@gmail.com> > wrote: > >> Yes, there is post-processing that goes on within the driver program >> (i.e. the command line tool with which you started the import job). >> >> The MapReduce job actually just creates HFiles, and then the >> post-processing simply involves telling HBase to use these HFiles. If your >> terminal closed while running the tool, then the HFiles won't be handed >> over to HBase, which will result in what you're seeing. >> >> I usually start import jobs like this using screen [1] so that losing a >> client terminal connection won't get in the way of the full job completing. >> >> >> - Gabriel >> >> >> >> 1. https://www.gnu.org/software/screen/manual/screen.html >> >> On Wed, Sep 16, 2015 at 9:07 PM, Gaurav Kanade <gaurav.kan...@gmail.com> >> wrote: >> >>> Sure, attached below the job counter values. I checked the final status >>> of the job and it said succeeded. I could not see the import tool exactly >>> because I ran it overnight and my machine rebooted at some point for some >>> updates - I wonder if there is some post-processing after the MR job which >>> might have failed due to this ? >>> >>> Thanks for the help ! >>> ---------------- >>> Logged in as: dr.who >>> Counters for job_1442389862209_0002 >>> Application Job >>> >>> - Overview >>> >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/job/job_1442389862209_0002> >>> - Counters >>> >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/jobcounters/job_1442389862209_0002> >>> - Configuration >>> >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/conf/job_1442389862209_0002> >>> - Map tasks >>> >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/tasks/job_1442389862209_0002/m> >>> - Reduce tasks >>> >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/tasks/job_1442389862209_0002/r> >>> >>> Tools >>> Counter Group Counters File System Counters >>> Name >>> Map >>> Reduce >>> Total >>> FILE: Number of bytes read >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.FileSystemCounter/FILE_BYTES_READ> >>> 1520770904675 >>> 2604849340144 4125620244819 FILE: Number of bytes written >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.FileSystemCounter/FILE_BYTES_WRITTEN> >>> 3031784709196 >>> 2616689890216 5648474599412 FILE: Number of large read operations >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.FileSystemCounter/FILE_LARGE_READ_OPS> >>> 0 >>> 0 0 FILE: Number of read operations >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.FileSystemCounter/FILE_READ_OPS> >>> 0 >>> 0 0 FILE: Number of write operations >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.FileSystemCounter/FILE_WRITE_OPS> >>> 0 >>> 0 0 WASB: Number of bytes read >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.FileSystemCounter/WASB_BYTES_READ> >>> 186405294283 >>> 0 186405294283 WASB: Number of bytes written >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.FileSystemCounter/WASB_BYTES_WRITTEN> >>> 0 >>> 363027342839 363027342839 WASB: Number of large read operations >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.FileSystemCounter/WASB_LARGE_READ_OPS> >>> 0 >>> 0 0 WASB: Number of read operations >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.FileSystemCounter/WASB_READ_OPS> >>> 0 >>> 0 0 WASB: Number of write operations >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.FileSystemCounter/WASB_WRITE_OPS> >>> 0 >>> 0 0 >>> Job Counters >>> Name >>> Map >>> Reduce >>> Total >>> Launched map tasks >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.JobCounter/TOTAL_LAUNCHED_MAPS> >>> 0 >>> 0 348 Launched reduce tasks >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.JobCounter/TOTAL_LAUNCHED_REDUCES> >>> 0 >>> 0 9 Rack-local map tasks >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.JobCounter/RACK_LOCAL_MAPS> >>> 0 >>> 0 348 Total megabyte-seconds taken by all map tasks >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.JobCounter/MB_MILLIS_MAPS> >>> 0 >>> 0 460560315648 Total megabyte-seconds taken by all reduce tasks >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.JobCounter/MB_MILLIS_REDUCES> >>> 0 >>> 0 158604449280 Total time spent by all map tasks (ms) >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.JobCounter/MILLIS_MAPS> >>> 0 >>> 0 599687911 Total time spent by all maps in occupied slots (ms) >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.JobCounter/SLOTS_MILLIS_MAPS> >>> 0 >>> 0 599687911 Total time spent by all reduce tasks (ms) >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.JobCounter/MILLIS_REDUCES> >>> 0 >>> 0 103258105 Total time spent by all reduces in occupied slots (ms) >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.JobCounter/SLOTS_MILLIS_REDUCES> >>> 0 >>> 0 206516210 Total vcore-seconds taken by all map tasks >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.JobCounter/VCORES_MILLIS_MAPS> >>> 0 >>> 0 599687911 Total vcore-seconds taken by all reduce tasks >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.JobCounter/VCORES_MILLIS_REDUCES> >>> 0 >>> 0 103258105 >>> Map-Reduce Framework >>> Name >>> Map >>> Reduce >>> Total >>> Combine input records >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/COMBINE_INPUT_RECORDS> >>> 0 >>> 0 0 Combine output records >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/COMBINE_OUTPUT_RECORDS> >>> 0 >>> 0 0 CPU time spent (ms) >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/CPU_MILLISECONDS> >>> 162773540 >>> 90154160 252927700 Failed Shuffles >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/FAILED_SHUFFLE> >>> 0 >>> 0 0 GC time elapsed (ms) >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/GC_TIME_MILLIS> >>> 7667781 >>> 1607188 9274969 Input split bytes >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/SPLIT_RAW_BYTES> >>> 52548 >>> 0 52548 Map input records >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/MAP_INPUT_RECORDS> >>> 861890673 >>> 0 861890673 Map output bytes >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/MAP_OUTPUT_BYTES> >>> 1488284643774 >>> 0 1488284643774 Map output materialized bytes >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/MAP_OUTPUT_MATERIALIZED_BYTES> >>> 1515865164102 >>> 0 1515865164102 Map output records >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/MAP_OUTPUT_RECORDS> >>> 13790250768 >>> 0 13790250768 Merged Map outputs >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/MERGED_MAP_OUTPUTS> >>> 0 >>> 3132 3132 Physical memory (bytes) snapshot >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/PHYSICAL_MEMORY_BYTES> >>> 192242380800 >>> 4546826240 196789207040 Reduce input groups >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/REDUCE_INPUT_GROUPS> >>> 0 >>> 861890673 861890673 Reduce input records >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/REDUCE_INPUT_RECORDS> >>> 0 >>> 13790250768 13790250768 Reduce output records >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/REDUCE_OUTPUT_RECORDS> >>> 0 >>> 13790250768 13790250768 Reduce shuffle bytes >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/REDUCE_SHUFFLE_BYTES> >>> 0 >>> 1515865164102 1515865164102 Shuffled Maps >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/SHUFFLED_MAPS> >>> 0 >>> 3132 3132 Spilled Records >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/SPILLED_RECORDS> >>> 27580501536 >>> 23694179168 51274680704 Total committed heap usage (bytes) >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/COMMITTED_HEAP_BYTES> >>> 186401685504 >>> 3023044608 189424730112 Virtual memory (bytes) snapshot >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/VIRTUAL_MEMORY_BYTES> >>> 537370951680 >>> 19158048768 556529000448 >>> Phoenix MapReduce Import >>> Name >>> Map >>> Reduce >>> Total >>> Upserts Done >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/Phoenix%20MapReduce%20Import/Upserts%20Done> >>> 861890673 >>> 0 861890673 >>> Shuffle Errors >>> Name >>> Map >>> Reduce >>> Total >>> BAD_ID >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/Shuffle%20Errors/BAD_ID> >>> 0 >>> 0 0 CONNECTION >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/Shuffle%20Errors/CONNECTION> >>> 0 >>> 0 0 IO_ERROR >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/Shuffle%20Errors/IO_ERROR> >>> 0 >>> 0 0 WRONG_LENGTH >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/Shuffle%20Errors/WRONG_LENGTH> >>> 0 >>> 0 0 WRONG_MAP >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/Shuffle%20Errors/WRONG_MAP> >>> 0 >>> 0 0 WRONG_REDUCE >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/Shuffle%20Errors/WRONG_REDUCE> >>> 0 >>> 0 0 >>> File Input Format Counters >>> Name >>> Map >>> Reduce >>> Total >>> Bytes Read >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.lib.input.FileInputFormatCounter/BYTES_READ> >>> 186395934997 >>> 0 186395934997 >>> File Output Format Counters >>> Name >>> Map >>> Reduce >>> Total >>> Bytes Written >>> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.lib.output.FileOutputFormatCounter/BYTES_WRITTEN> >>> 0 >>> 363027342839 363027342839 >>> >>> On 16 September 2015 at 11:46, Gabriel Reid <gabriel.r...@gmail.com> >>> wrote: >>> >>>> Can you view (and post) the job counters values from the import job? >>>> These should be visible in the job history server. >>>> >>>> Also, did you see the import tool exit successfully (in the terminal >>>> where you started it?) >>>> >>>> - Gabriel >>>> >>>> On Wed, Sep 16, 2015 at 6:24 PM, Gaurav Kanade <gaurav.kan...@gmail.com> >>>> wrote: >>>> > Hi guys >>>> > >>>> > I was able to get this to work after using bigger VMs for data nodes; >>>> > however now the bigger problem I am facing is after my MR job >>>> completes >>>> > successfully I am not seeing any rows loaded in my table (count shows >>>> 0 both >>>> > via phoenix and hbase) >>>> > >>>> > Am I missing something simple ? >>>> > >>>> > Thanks >>>> > Gaurav >>>> > >>>> > >>>> > On 12 September 2015 at 11:16, Gabriel Reid <gabriel.r...@gmail.com> >>>> wrote: >>>> >> >>>> >> Around 1400 mappers sounds about normal to me -- I assume your block >>>> >> size on HDFS is 128 MB, which works out to 1500 mappers for 200 GB of >>>> >> input. >>>> >> >>>> >> To add to what Krishna asked, can you be a bit more specific on what >>>> >> you're seeing (in log files or elsewhere) which leads you to believe >>>> >> the data nodes are running out of capacity? Are map tasks failing? >>>> >> >>>> >> If this is indeed a capacity issue, one thing you should ensure is >>>> >> that map output comression is enabled. This doc from Cloudera >>>> explains >>>> >> this (and the same information applies whether you're using CDH or >>>> >> not) - >>>> >> >>>> http://www.cloudera.com/content/cloudera/en/documentation/cdh4/latest/CDH4-Installation-Guide/cdh4ig_topic_23_3.html >>>> >> >>>> >> In any case, apart from that there isn't any basic thing that you're >>>> >> probably missing, so any additional information that you can supply >>>> >> about what you're running into would be useful. >>>> >> >>>> >> - Gabriel >>>> >> >>>> >> >>>> >> On Sat, Sep 12, 2015 at 2:17 AM, Krishna <research...@gmail.com> >>>> wrote: >>>> >> > 1400 mappers on 9 nodes is about 155 mappers per datanode which >>>> sounds >>>> >> > high >>>> >> > to me. There are very few specifics in your mail. Are you using >>>> YARN? >>>> >> > Can >>>> >> > you provide details like table structure, # of rows & columns, >>>> etc. Do >>>> >> > you >>>> >> > have an error stack? >>>> >> > >>>> >> > >>>> >> > On Friday, September 11, 2015, Gaurav Kanade < >>>> gaurav.kan...@gmail.com> >>>> >> > wrote: >>>> >> >> >>>> >> >> Hi All >>>> >> >> >>>> >> >> I am new to Apache Phoenix (and relatively new to MR in general) >>>> but I >>>> >> >> am >>>> >> >> trying a bulk insert of a 200GB tar separated file in an HBase >>>> table. >>>> >> >> This >>>> >> >> seems to start off fine and kicks off about ~1400 mappers and 9 >>>> >> >> reducers (I >>>> >> >> have 9 data nodes in my setup). >>>> >> >> >>>> >> >> At some point I seem to be running into problems with this >>>> process as >>>> >> >> it >>>> >> >> seems the data nodes run out of capacity (from what I can see my >>>> data >>>> >> >> nodes >>>> >> >> have 400GB local space). It does seem that certain reducers eat >>>> up most >>>> >> >> of >>>> >> >> the capacity on these - thus slowing down the process to a crawl >>>> and >>>> >> >> ultimately leading to Node Managers complaining that Node Health >>>> is bad >>>> >> >> (log-dirs and local-dirs are bad) >>>> >> >> >>>> >> >> Is there some inherent setting I am missing that I need to set up >>>> for >>>> >> >> the >>>> >> >> particular job ? >>>> >> >> >>>> >> >> Any pointers would be appreciated >>>> >> >> >>>> >> >> Thanks >>>> >> >> >>>> >> >> -- >>>> >> >> Gaurav Kanade, >>>> >> >> Software Engineer >>>> >> >> Big Data >>>> >> >> Cloud and Enterprise Division >>>> >> >> Microsoft >>>> > >>>> > >>>> > >>>> > >>>> > -- >>>> > Gaurav Kanade, >>>> > Software Engineer >>>> > Big Data >>>> > Cloud and Enterprise Division >>>> > Microsoft >>>> >>> >>> >>> >>> -- >>> Gaurav Kanade, >>> Software Engineer >>> Big Data >>> Cloud and Enterprise Division >>> Microsoft >>> >> >> > > > -- > Gaurav Kanade, > Software Engineer > Big Data > Cloud and Enterprise Division > Microsoft > -- Gaurav Kanade, Software Engineer Big Data Cloud and Enterprise Division Microsoft