Thanks. I will have a look at my InputFormat. If my InputFormat make one split, there will be only one mapper.
Regards, Jérôme. Le Wed, 6 Feb 2013 08:41:50 -0800, Cheolsoo Park <[email protected]> a écrit : > Hi Jerome, > > It's not Pig but Hadoop that splits input files. Pig Load/Store UDFs > are associated with InputFormat, OutputFormat and RecordReader > classes. Hadoop uses them to decide how to creates splits. Here are > more explanations: > http://www.quora.com/How-does-Hadoop-handle-split-input-records > > Thanks, > Cheolsoo > > > On Wed, Feb 6, 2013 at 2:00 AM, Jerome Person > <[email protected]>wrote: > > > It is not a gzip file. It is an XML file which is load with an UDF. > > When does pig split the input file. > > I guess my loader is wrong ? > > > > Jérôme. > > > > > > Le Tue, 5 Feb 2013 15:10:14 -0800, > > Prashant Kommireddi <[email protected]> a écrit : > > > > > Is this a gzip file? You have to make sure the compression scheme > > > you use is splittable for more mappers to be spawned. > > > > > > -Prashant > > > > > > On Tue, Feb 5, 2013 at 2:57 PM, Jerome Person > > > <[email protected]>wrote: > > > > > > > As it is a 50 Gb single file, I believe this job need more than > > > > one mapper. > > > > > > > > I do not find any mapred.max.split.size parameter in the job > > > > configuration xml file (only mapred.min.split.size = 0). > > > > > > > > Is there any "key word" to activate parallelism into the pig > > > > script ? > > > > > > > > Jérôme. > > > > > > > > Le Tue, 5 Feb 2013 14:13:32 -0800, > > > > Cheolsoo Park <[email protected]> a écrit : > > > > > > > > > >> But one more point, I have only one mapper running with > > > > > >> this pig job as > > > > > my cluster has 4 slaves. How could it be different ? > > > > > > > > > > Are you asking why only a single mapper runs even though there > > > > > are 3 more slaves available? 4 slaves doesn't mean that you > > > > > will always have 4 mappers/reducers. Hadoop launches a mapper > > > > > per file split. > > > > > > > > > > How many input file do you have? > > > > > > > > > > - If you have just one small file, Pig will launch a single > > > > > mapper. You can increase parallelism by splitting that file > > > > > into smaller splits: > > > > > > > > > > > http://stackoverflow.com/questions/9678180/change-file-split-size-in-hadoop > > > > > > > > > > - If you have many small files, Pig will combine them into a > > > > > single split and launch a single mapper. This case, you might > > > > > want to change pig.maxCombinedSplitSize: > > > > > http://pig.apache.org/docs/r0.10.0/perf.html#combine-files > > > > > > > > > > Thanks, > > > > > Cheolsoo > > > > > > > > > > On Tue, Feb 5, 2013 at 8:06 AM, Jerome Pierson > > > > > <[email protected]>wrote: > > > > > > > > > > > Thaks a lot. It works fine. > > > > > > > > > > > > But one more point, I have only one mapper running with > > > > > > this pig job as my cluster has 4 slaves. > > > > > > How could it be different ? > > > > > > > > > > > > Regards, > > > > > > Jérôme > > > > > > > > > > > > > > > > > > Le 31/01/2013 20:45, Cheolsoo Park a écrit : > > > > > > > > > > > >> Hi Jerome, > > > > > >> > > > > > >> Try this: > > > > > >> > > > > > >> XmlTag = FOREACH xmlToTuple GENERATE FLATTEN ($0); > > > > > >> XmlTag2 = FOREACH XmlTag { > > > > > >> tag_with_amenity = FILTER tag BY (tag_attr_k == > > > > > >> 'amenity'); GENERATE *, COUNT(tag_with_amenity) AS count; > > > > > >> }; > > > > > >> XmlTag3 = FOREACH (FILTER XmlTag2 BY count > 0) GENERATE > > > > > >> node_attr_id, node_attr_lon, node_attr_lat, tag; > > > > > >> > > > > > >> Thanks, > > > > > >> Cheolsoo > > > > > >> > > > > > >> > > > > > >> On Thu, Jan 31, 2013 at 9:19 AM, Jerome Pierson > > > > > >> <[email protected]>**wrote: > > > > > >> > > > > > >> Hi There, > > > > > >>> > > > > > >>> I am a beginner, I achieved something, but I guess I could > > > > > >>> have done better. Let me explain. > > > > > >>> (Pig 0.10) > > > > > >>> > > > > > >>> My data is DESCRIBE as : > > > > > >>> > > > > > >>> xmlToTuple: {(node_attr_id: int,node_attr_lon: > > > > > >>> chararray,node_attr_lat: chararray,tag: {(tag_attr_k: > > > > > >>> chararray,tag_attr_v: chararray)})} > > > > > >>> > > > > > >>> > > > > > >>> and DUMP like this : > > > > > >>> > > > > > >>> ((100312088,45.2745669,-12.****7776222,{(created_by,JOSM)})) > > > > > >>> ((100948454,45.2620946,-12.****7849171,)) > > > > > >>> ((100948519,45.2356985,-12.****7707014,{(created_by,JOSM)})) > > > > > >>> ((704398904,45.2416667,-13.****0058333,{(lat,-13.00583333),(**** > > > > > >>> lon,45.24166667)})) > > > > > >>> ((1230941976,45.0743117,-12.****6888807,{(place,village)})) > > > > > >>> ((1230941977,45.0832807,-12.****6810328,{(name,Mtsahara)})) > > > > > >>> ((1976927219,45.2272263,-12.****7794359,)) > > > > > >>> > > ((1751057677,45.2216163,-12.****7825896,{(amenity,fast_food),(**** > > > > > >>> name,Brochetterie)})) > > > > > >>> > > ((1751057678,45.2216953,-12.****7829678,{(amenity,fast_food),(**** > > > > > >>> name,Brochetterie)})) > > > > > >>> > > > > ((100948360,45.2338541,-12.****7762230,{(amenity,ferry_****terminal)})) > > > > > >>> ((362795028,45.2086809,-12.****8062991,{(amenity,fuel),(**** > > > > > >>> operator,Total)})) > > > > > >>> > > > > > >>> > > > > > >>> I want to extract the record which have a certain value > > > > > >>> for the tag_attr_k > > > > > >>> field. For example, give me the record where there is a > > > > > >>> tag_attr_k = amesity ? That should be : > > > > > >>> > > > > > >>> > > (100948360,-12.7762230,45.****2338541,{(amenity,ferry_****terminal)}) > > > > > >>> (362795028,-12.8062991,45.****2086809,{(operator,Total),(**** > > > > > >>> amenity,fuel)}) > > > > > >>> (1751057677,-12.7825896,45.****2216163,{(amenity,fast_food),(**** > > > > > >>> name,Brochetterie)}) > > > > > >>> (1751057678,-12.7829678,45.****2216953,{(amenity,fast_food),(**** > > > > > >>> name,Brochetterie)}) > > > > > >>> > > > > > >>> So (node_attr_id, node_attr_lat , > > > > > >>> node_attr_lon,{(tag_attr_k, > > > > > >>> tag_attr_v)...(tag_attr_k,tag_****attr_v)} > > > > > >>> > > > > > >>> > > > > > >>> I ended up with this script. > > > > > >>> > > > > > >>> > > > > > >>> ... > > > > > >>> XmlTag = foreach xmlToTuple GENERATE FLATTEN ($0); > > > > > >>> --removed top including > > > > > >>> level bag > > > > > >>> XmlTag2 = foreach XmlTag GENERATE $0 as id, $1 as lon, $2 > > > > > >>> as lat, FLATTEN (tag) as (key, value); --flatten the bag > > > > > >>> of tags XmlTag3 = FILTER XmlTag2 BY key == 'amenity'; -- > > > > > >>> get all the records with > > > > > >>> amenity tags > > > > > >>> XmlTag4 = JOIN XmlTag3 BY id, XmlTag2 BY id; -- re-build > > > > > >>> records with all tags containing amenity tag > > > > > >>> XmlTag7 = foreach XmlTag4 GENERATE $0 as id,$1 as lon, $2 > > > > > >>> as lat,$8 as key, $9 as value; -- re-build records : > > > > > >>> removing redundant field XmlTag5 = GROUP XmlTag7 BY > > > > > >>> (id,lat,lon); -- re-build records : grouping redundant > > > > > >>> records XmlTag8 = foreach XmlTag5 { --rebuild records : > > > > > >>> id,lat,long {(key,value)...(key,value)} > > > > > >>> tag = foreach XmlTag7 GENERATE key, value; > > > > > >>> GENERATE group.id,group.lat,group.lon,****tag; > > > > > >>> > > > > > >>> }; > > > > > >>> > > > > > >>> Using this variable: > > > > > >>> > > > > > >>> xmlToTuple: {(node_attr_id: int,node_attr_lon: > > > > > >>> chararray,node_attr_lat: chararray,tag: {(tag_attr_k: > > > > > >>> chararray,tag_attr_v: chararray)})} XmlTag: > > > > > >>> {null::node_attr_id: int,null::node_attr_lon: > > > > > >>> chararray,null::node_attr_lat: chararray,null::tag: > > > > > >>> {(tag_attr_k: chararray,tag_attr_v: chararray)}} XmlTag2: > > > > > >>> {id: int,lon: chararray,lat: chararray,key: > > > > > >>> chararray,value: chararray} XmlTag3: {id: int,lon: > > > > > >>> chararray,lat: chararray,key: chararray,value: chararray} > > > > > >>> XmlTag4: {XmlTag3::id: int,XmlTag3::lon: > > > > > >>> chararray,XmlTag3::lat: chararray,XmlTag3::key: > > > > > >>> chararray,XmlTag3::value: chararray,XmlTag2::id: > > > > > >>> int,XmlTag2::lon: chararray,XmlTag2::lat: > > > > > >>> chararray,XmlTag2::key: chararray,XmlTag2::value: > > > > > >>> chararray} XmlTag7: {id: int,lon: chararray,lat: > > > > > >>> chararray,key: chararray,value: chararray} XmlTag5: > > > > > >>> {group: (id: int,lat: chararray,lon: chararray),XmlTag7: > > > > > >>> {(id: int,lon: chararray,lat: chararray,key: > > > > > >>> chararray,value: chararray)}} XmlTag8: {id: int,lat: > > > > > >>> chararray,lon: chararray,tag: {(key: chararray,value: > > > > > >>> chararray)}} > > > > > >>> > > > > > >>> > > > > > >>> I guess this not very straightforward and can be largely > > > > > >>> optimized. Please > > > > > >>> give me some hints ? > > > > > >>> > > > > > >>> Regards, > > > > > >>> Jérôme > > > > > >>> > > > > > >>> > > > > > > > > > > > > > > > > > >
