Send an empty e-mail to [email protected] and follow
instructions in the reply.

On Thu, Oct 26, 2017 at 12:10 AM Seshachalam Malisetti <[email protected]>
wrote:

> how do unsubscribe from this list ? please help
>
> Sent from Nylas Mail
> <https://n1.nylas.com/link/983c247e34fa4dc3dc19fbabbacada4a5de2fc0560b521229ea4d4df44b251ad/0?redirect=https%3A%2F%2Fnylas.com%3Fref%3Dn1&recipient=user%40predictionio.apache.org>,
> the best free email app for work
>
> On Oct 26 2017, at 12:39 pm, Vaghawan Ojha <[email protected]> wrote:
>
>> Hi Abhimanyu,
>>
>> I don't think this template works with version 0.11.0. As per the
>> template :
>>
>> update for PredictionIO 0.9.2, including:
>>
>> I don't think it supports the latest pio. You rather switch it to 0.9.2
>> if you want to experiment it.
>>
>> On Thu, Oct 26, 2017 at 12:52 PM, Abhimanyu Nagrath <
>> [email protected]> wrote:
>>
>> Hi Vaghawan ,
>>
>> I am using v0.11.0-incubating with (ES - v5.2.1 , Hbase - 1.2.6 , Spark -
>> 2.1.0).
>>
>> Regards,
>> Abhimanyu
>>
>> On Thu, Oct 26, 2017 at 12:31 PM, Vaghawan Ojha <[email protected]>
>> wrote:
>>
>> Hi Abhimanyu,
>>
>> Ok, which version of pio is this? Because the template looks old to me.
>>
>> On Thu, Oct 26, 2017 at 12:44 PM, Abhimanyu Nagrath <
>> [email protected]> wrote:
>>
>> Hi Vaghawan,
>>
>> yes, the spark master connection string is correct I am getting executor
>> fails to connect to spark master after 4-5 hrs.
>>
>>
>> Regards,
>> Abhimanyu
>>
>> On Thu, Oct 26, 2017 at 12:17 PM, Sachin Kamkar <[email protected]>
>> wrote:
>>
>> It should be correct, as the user got the exception after 3-4 hours of
>> starting. So looks like something else broke. OOM?
>>
>> With Regards,
>>
>>      Sachin
>> ⚜KTBFFH⚜
>>
>> On Thu, Oct 26, 2017 at 12:15 PM, Vaghawan Ojha <[email protected]>
>> wrote:
>>
>> "Executor failed to connect with master ", are you sure the --master
>> spark://*.*.*.*:7077 is correct?
>>
>> Like the one you copied from the spark master's web ui? sometimes having
>> that wrong fails to connect with the spark master.
>>
>> Thanks
>>
>> On Thu, Oct 26, 2017 at 12:02 PM, Abhimanyu Nagrath <
>> [email protected]> wrote:
>>
>> I am new to predictionIO . I am using template
>> https://github.com/EmergentOrder/template-scala-probabilistic-classifier-batch-lbfgs
>> <https://github.com/EmergentOrder/template-scala-probabilistic-classifier-batch-lbfgs?recipient=user%40predictionio.apache.org>
>> .
>>
>> My training dataset count is 1184603 having approx 6500 features. I am
>> using ec2 r4.8xlarge system (240 GB RAM, 32 Cores, 200 GB Swap).
>>
>>
>> I tried two ways for training
>>
>>  1. Command '
>>
>> > pio train -- --driver-memory 120G --executor-memory 100G -- conf
>> > spark.network.timeout=10000000
>>
>> '
>>   Its throwing exception after 3-4 hours.
>>
>>
>>     Exception in thread "main" org.apache.spark.SparkException: Job
>> aborted due to stage failure: Task 0 in stage 1.0 failed 1 times, most
>> recent failure: Lost task 0.0 in stage 1.0 (TID 15, localhost, executor
>> driver): ExecutorLostFailure (executor driver exited caused by one of the
>> running tasks) Reason: Executor heartbeat timed out after 181529 ms
>>     Driver stacktrace:
>>             at org.apache.spark.scheduler.DAGScheduler.org
>> <http://org.apache.spark.scheduler.dagscheduler.org/?recipient=user%40predictionio.apache.org>
>> $apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1435)
>>             at
>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1423)
>>             at
>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1422)
>>             at
>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>>             at
>> scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
>>             at
>> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1422)
>>             at
>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
>>             at
>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
>>             at scala.Option.foreach(Option.scala:257)
>>             at
>> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:802)
>>             at
>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1650)
>>             at
>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1605)
>>             at
>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1594)
>>             at
>> org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
>>             at
>> org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628)
>>             at
>> org.apache.spark.SparkContext.runJob(SparkContext.scala:1918)
>>             at
>> org.apache.spark.SparkContext.runJob(SparkContext.scala:1931)
>>             at
>> org.apache.spark.SparkContext.runJob(SparkContext.scala:1944)
>>             at
>> org.apache.spark.rdd.RDD$$anonfun$take$1.apply(RDD.scala:1353)
>>             at
>> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
>>             at
>> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
>>             at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
>>             at org.apache.spark.rdd.RDD.take(RDD.scala:1326)
>>             at
>> org.example.classification.LogisticRegressionWithLBFGSAlgorithm.train(LogisticRegressionWithLBFGSAlgorithm.scala:28)
>>             at
>> org.example.classification.LogisticRegressionWithLBFGSAlgorithm.train(LogisticRegressionWithLBFGSAlgorithm.scala:21)
>>             at
>> org.apache.predictionio.controller.P2LAlgorithm.trainBase(P2LAlgorithm.scala:49)
>>             at
>> org.apache.predictionio.controller.Engine$$anonfun$18.apply(Engine.scala:692)
>>             at
>> org.apache.predictionio.controller.Engine$$anonfun$18.apply(Engine.scala:692)
>>             at
>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>>             at
>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>>             at scala.collection.immutable.List.foreach(List.scala:381)
>>             at
>> scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
>>             at scala.collection.immutable.List.map(List.scala:285)
>>             at
>> org.apache.predictionio.controller.Engine$.train(Engine.scala:692)
>>             at
>> org.apache.predictionio.controller.Engine.train(Engine.scala:177)
>>             at
>> org.apache.predictionio.workflow.CoreWorkflow$.runTrain(CoreWorkflow.scala:67)
>>             at
>> org.apache.predictionio.workflow.CreateWorkflow$.main(CreateWorkflow.scala:250)
>>             at
>> org.apache.predictionio.workflow.CreateWorkflow.main(CreateWorkflow.scala)
>>             at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
>>             at
>> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
>>             at
>> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
>>             at java.lang.reflect.Method.invoke(Method.java:498)
>>             at
>> org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:738)
>>             at
>> org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:187)
>>             at
>> org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:212)
>>             at
>> org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:126)
>>             at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
>>
>> 2. I started spark standalone cluster with 1 master and 3 workers and
>> executed the command
>>
>> > pio train -- --master spark://*.*.*.*:7077 --driver-memory 50G
>> > --executor-memory 50G
>>
>> And after some times getting the error . Executor failed to connect with
>> master and training gets stopped.
>>
>> I have changed the feature count from 6500 - > 500 and still the
>> condition is same. So can anyone suggest me am I missing something
>>
>> and In between training getting continuous warnings like :
>> [
>>
>> > WARN] [ScannerCallable] Ignore, probably already closed
>>
>>
>> Regards,
>> Abhimanyu
>>
>>
>>
>>
>>
>>
>>
>>

Reply via email to