Hi,

Thanks for the pointers.  I did get my code working within the normal
spark-shell.  However, since I'm building a separate analysis service which
pulls in the Spark libraries using SBT, I'd much rather have the custom
shell incorporated in that, instead of having to use the default
downloadable distribution.


I figured out how to create a custom Scala REPL using the instructions at
http://stackoverflow.com/questions/18628516/embedded-scala-repl-interpreter-example-for-2-10
(The latter answer is my helper class that I use.)

I injected the SparkContext and my RDD's and for example rdd.count works
fine.  However, when I try to perform a filter operation, I get a
ClassNotFoundException [1].  My guess is that the inline function I define
is created only within the REPL, and does not get sent to the processors
(even though I'm using a local cluster).

I found out that there's a separate spark-repl library, which contains the
SparkILoop class.  When I replace the ILoop with SparkILoop, I get the
Spark logo + version number, a NullPointerException [2] and then the Scala
prompt.  Still, I get exactly the same ClassNotFoundException when trying
to perform a filter operation.

Can anyone give any pointers on how to get this working?


Best regards,
   Sampo N.



ClassNotFoundException [1]:

scala> data.profile.filter(p => p.email == "sampo.niska...@mwsoy.com").count
14/02/28 08:49:16 ERROR Executor: Exception in task ID 1
java.lang.ClassNotFoundException: $line9.$read$$iw$$iw$$anonfun$1
at java.net.URLClassLoader$1.run(URLClassLoader.java:366)
at java.net.URLClassLoader$1.run(URLClassLoader.java:355)
 at java.security.AccessController.doPrivileged(Native Method)
at java.net.URLClassLoader.findClass(URLClassLoader.java:354)
 at java.lang.ClassLoader.loadClass(ClassLoader.java:425)
at java.lang.ClassLoader.loadClass(ClassLoader.java:358)
 at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Class.java:270)
at
org.apache.spark.serializer.JavaDeserializationStream$$anon$1.resolveClass(JavaSerializer.scala:37)
 at java.io.ObjectInputStream.readNonProxyDesc(ObjectInputStream.java:1612)
at java.io.ObjectInputStream.readClassDesc(ObjectInputStream.java:1517)
 at
java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1771)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
 at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1990)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1915)
 at
java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
 at java.io.ObjectInputStream.readObject(ObjectInputStream.java:370)
at
org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:40)
 at
org.apache.spark.scheduler.ResultTask$.deserializeInfo(ResultTask.scala:63)
at org.apache.spark.scheduler.ResultTask.readExternal(ResultTask.scala:139)
 at java.io.ObjectInputStream.readExternalData(ObjectInputStream.java:1837)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1796)
 at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
at java.io.ObjectInputStream.readObject(ObjectInputStream.java:370)
 at
org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:40)
at
org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:62)
 at
org.apache.spark.executor.Executor$TaskRunner$$anonfun$run$1.apply$mcV$sp(Executor.scala:195)
at
org.apache.spark.deploy.SparkHadoopUtil.runAsUser(SparkHadoopUtil.scala:49)
 at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:178)
at
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
 at
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:744)
14/02/28 08:49:16 ERROR TaskSetManager: Task 1.0:0 failed 1 times; aborting
job
org.apache.spark.SparkException: Job aborted: Task 1.0:0 failed 1 times
(most recent failure: Exception failure: java.lang.ClassNotFoundException:
$anonfun$1)
 at
org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1028)
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1026)
 at
scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
 at org.apache.spark.scheduler.DAGScheduler.org
$apache$spark$scheduler$DAGScheduler$$abortStage(DAGScheduler.scala:1026)
 at
org.apache.spark.scheduler.DAGScheduler$$anonfun$processEvent$10.apply(DAGScheduler.scala:619)
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$processEvent$10.apply(DAGScheduler.scala:619)
 at scala.Option.foreach(Option.scala:236)
at
org.apache.spark.scheduler.DAGScheduler.processEvent(DAGScheduler.scala:619)
 at
org.apache.spark.scheduler.DAGScheduler$$anonfun$start$1$$anon$2$$anonfun$receive$1.applyOrElse(DAGScheduler.scala:207)
at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
 at akka.actor.ActorCell.invoke(ActorCell.scala:456)
at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
 at akka.dispatch.Mailbox.run(Mailbox.scala:219)
at
akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
 at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
at
scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
 at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
at
scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)


NullPointerException [2]:

Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 0.9.0
      /_/

Using Scala version 2.10.3 (OpenJDK 64-Bit Server VM, Java 1.7.0_51)
Type in expressions to have them evaluated.
Type :help for more information.
java.lang.NullPointerException
at $iwC$$iwC.<init>(<console>:8)
at $iwC.<init>(<console>:14)
 at <init>(<console>:16)
at .<init>(<console>:20)
at .<clinit>(<console>)
 at .<init>(<console>:7)
at .<clinit>(<console>)
at $print(<console>)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
 at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
 at
org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:772)
at
org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1040)
 at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:609)
at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:640)
 at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:604)
at org.apache.spark.repl.SparkILoop.reallyInterpret$1(SparkILoop.scala:788)
 at
org.apache.spark.repl.SparkILoop.interpretStartingWith(SparkILoop.scala:833)
at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:745)
 at
org.apache.spark.repl.SparkILoopInit$$anonfun$initializeSpark$1.apply(SparkILoopInit.scala:119)
at
org.apache.spark.repl.SparkILoopInit$$anonfun$initializeSpark$1.apply(SparkILoopInit.scala:118)
 at org.apache.spark.repl.SparkIMain.beQuietDuring(SparkIMain.scala:258)
at
org.apache.spark.repl.SparkILoopInit$class.initializeSpark(SparkILoopInit.scala:118)
 at org.apache.spark.repl.SparkILoop.initializeSpark(SparkILoop.scala:53)
at
org.apache.spark.repl.SparkILoop$$anonfun$process$1$$anonfun$apply$mcZ$sp$5.apply$mcV$sp(SparkILoop.scala:903)
 at
org.apache.spark.repl.SparkILoopInit$class.runThunks(SparkILoopInit.scala:140)
at org.apache.spark.repl.SparkILoop.runThunks(SparkILoop.scala:53)
 at
org.apache.spark.repl.SparkILoopInit$class.postInitialization(SparkILoopInit.scala:102)
at org.apache.spark.repl.SparkILoop.postInitialization(SparkILoop.scala:53)
 at
org.apache.spark.repl.SparkILoop$$anonfun$process$1.apply$mcZ$sp(SparkILoop.scala:920)
at
org.apache.spark.repl.SparkILoop$$anonfun$process$1.apply(SparkILoop.scala:876)
 at
org.apache.spark.repl.SparkILoop$$anonfun$process$1.apply(SparkILoop.scala:876)
at
scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135)
 at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:876)
at com.wellmo.reporting.Repl$.run(Repl.scala:30)
 at
com.wellmo.reporting.WellmoReportingScala.run(WellmoReportingScala.scala:60)
at com.wellmo.reporting.WellmoReportingJava.run(WellmoReportingJava.java:44)
 at
com.wellmo.reporting.WellmoReportingJava.main(WellmoReportingJava.java:33)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
 at java.lang.reflect.Method.invoke(Method.java:606)
at sbt.Run.invokeMain(Run.scala:68)
at sbt.Run.run0(Run.scala:61)
 at sbt.Run.execute$1(Run.scala:50)
at sbt.Run$$anonfun$run$1.apply$mcV$sp(Run.scala:54)
at sbt.TrapExit$.executeMain$1(TrapExit.scala:33)
 at sbt.TrapExit$$anon$1.run(TrapExit.scala:42)

Spark context available as sc.



*    Sampo Niskanen*

*Lead developer / Wellmo*
    sampo.niska...@wellmo.com
    +358 40 820 5291



On Wed, Feb 26, 2014 at 10:24 AM, Matei Zaharia <matei.zaha...@gmail.com>wrote:

> In Spark 0.9 and master, you can pass the -i argument to spark-shell to
> load a script containing commands before opening the prompt. This is also a
> feature of the Scala shell as a whole (try scala -help for details).
>
> Also, once you're in the shell, you can use :load file.scala to execute
> the content of file.scala as if you'd typed it into the shell.
>
> Matei
>
> On Feb 25, 2014, at 11:44 PM, Sampo Niskanen <sampo.niska...@wellmo.com>
> wrote:
>
> > Hi,
> >
> > I'd like to create a custom version of the Spark shell, which has
> automatically defined some other variables / RDDs (in addition to 'sc')
> specific to our application.  Is this possible?
> >
> > I took a look at the code that the spark-shell invokes, and it seems
> quite complex.  Can this be reused from my code?
> >
> >
> > I'm implementing a standalone application that uses the Spark libraries
> (managed by SBT).  Ideally, I'd like to be able to launch the shell from
> that application, instead of using the default Spark distribution.
>  Alternatively, can some utility code be injected within the standard
> spark-shell?
> >
> >
> > Thanks.
> >
> >     Sampo Niskanen
> >     Lead developer / Wellmo
> >
> >
>
>

Reply via email to