Even a count() on the result of the flatMap() fails with the same error. Somehow the formatting on the error output got messed in my previous email, so here's a relevant snippet of the output again.
14/03/01 04:39:01 INFO scheduler.DAGScheduler: Failed to run count at <stdin>:1 Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/root/spark/python/pyspark/rdd.py", line 542, in count return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum() File "/root/spark/python/pyspark/rdd.py", line 533, in sum return self.mapPartitions(lambda x: [sum(x)]).reduce(operator.add) File "/root/spark/python/pyspark/rdd.py", line 499, in reduce vals = self.mapPartitions(func).collect() File "/root/spark/python/pyspark/rdd.py", line 463, in collect bytesInJava = self._jrdd.collect().iterator() File "/root/spark/python/lib/py4j-0.8.1-src.zip/py4j/java_gateway.py", line 537, in __call__ File "/root/spark/python/lib/py4j-0.8.1-src.zip/py4j/protocol.py", line 300, in get_return_value py4j.protocol.Py4JJavaError: An error occurred while calling o396.collect. : org.apache.spark.SparkException: Job aborted: Task 29.0:0 failed 4 times (most recent failure: Exception failure: java.net.SocketException: Connection reset) at org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1028) at org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1026) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) at org.apache.spark.scheduler.DAGScheduler.org $apache$spark$scheduler$DAGScheduler$$abortStage(DAGScheduler.scala:1026) at org.apache.spark.scheduler.DAGScheduler$$anonfun$processEvent$10.apply(DAGScheduler.scala:619) at org.apache.spark.scheduler.DAGScheduler$$anonfun$processEvent$10.apply(DAGScheduler.scala:619) at scala.Option.foreach(Option.scala:236) at org.apache.spark.scheduler.DAGScheduler.processEvent(DAGScheduler.scala:619) at org.apache.spark.scheduler.DAGScheduler$$anonfun$start$1$$anon$2$$anonfun$receive$1.applyOrElse(DAGScheduler.scala:207) at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498) at akka.actor.ActorCell.invoke(ActorCell.scala:456) at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237) at akka.dispatch.Mailbox.run(Mailbox.scala:219) at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386) at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) Any pointers to where I should look, or things to try? Nick On Fri, Feb 28, 2014 at 6:33 PM, nicholas.chammas < nicholas.cham...@gmail.com> wrote: > I've done a whole bunch of things to this RDD, and now when I try to > sortByKey(), this is what I get: > > >>> flattened_po.flatMap(lambda x: > >>> map_to_database_types(x)).sortByKey()14/02/28 > 23:18:41 INFO spark.SparkContext: Starting job: sortByKey at <stdin>:114/02/28 > 23:18:41 INFO scheduler.DAGScheduler: Got job 22 (sortByKey at <stdin>:1) > with 1 output partitions (allowLocal=false)14/02/28 23:18:41 INFO > scheduler.DAGScheduler: Final stage: Stage 23 (sortByKey at <stdin>:1)14/02/28 > 23:18:41 INFO scheduler.DAGScheduler: Parents of final stage: List()14/02/28 > 23:18:41 INFO scheduler.DAGScheduler: Missing parents: List()14/02/28 > 23:18:41 INFO scheduler.DAGScheduler: Submitting Stage 23 (PythonRDD[41] at > sortByKey at <stdin>:1), which has no missing parents14/02/28 23:18:41 > INFO scheduler.DAGScheduler: Submitting 1 missing tasks from Stage 23 > (PythonRDD[41] at sortByKey at <stdin>:1)14/02/28 23:18:41 INFO > scheduler.TaskSchedulerImpl: Adding task set 23.0 with 1 tasks14/02/28 > 23:18:41 INFO scheduler.TaskSetManager: Starting task 23.0:0 as TID 32 on > executor 0: ip-<blah>.ec2.internal (PROCESS_LOCAL)14/02/28 23:18:41 INFO > scheduler.TaskSetManager: Serialized task 23.0:0 as 4985 bytes in 1 ms14/02/28 > 23:18:41 WARN scheduler.TaskSetManager: Lost TID 32 (task 23.0:0)14/02/28 > 23:18:41 WARN scheduler.TaskSetManager: Loss was due to > java.net.SocketExceptionjava.net.SocketException: Connection reset at > java.net.SocketInputStream.read(SocketInputStream.java:196) at > java.net.SocketInputStream.read(SocketInputStream.java:122) at > java.io.BufferedInputStream.fill(BufferedInputStream.java:235) at > java.io.BufferedInputStream.read(BufferedInputStream.java:254) at > java.io.DataInputStream.readInt(DataInputStream.java:387) at > org.apache.spark.api.python.PythonRDD$$anon$1.read(PythonRDD.scala:110) at > org.apache.spark.api.python.PythonRDD$$anon$1.<init>(PythonRDD.scala:153) at > org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:96) at > org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:241) at > org.apache.spark.rdd.RDD.iterator(RDD.scala:232) at > org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:109) at > org.apache.spark.scheduler.Task.run(Task.scala:53) at > org.apache.spark.executor.Executor$TaskRunner$$anonfun$run$1.apply$mcV$sp(Executor.scala:213) > at > org.apache.spark.deploy.SparkHadoopUtil.runAsUser(SparkHadoopUtil.scala:49) at > org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:178) at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) > at > java.lang.Thread.run(Thread.java:744)14/02/28 23:18:41 INFO > scheduler.TaskSetManager: Starting task 23.0:0 as TID 33 on executor 0: > ip-<blah>.ec2.internal (PROCESS_LOCAL)14/02/28 23:18:41 INFO > scheduler.TaskSetManager: Serialized task 23.0:0 as 4985 bytes in 1 ms14/02/28 > 23:18:41 WARN scheduler.TaskSetManager: Lost TID 33 (task 23.0:0)14/02/28 > 23:18:41 INFO scheduler.TaskSetManager: Loss was due to > java.net.SocketException: Connection reset [duplicate 1]14/02/28 23:18:41 > INFO scheduler.TaskSetManager: Starting task 23.0:0 as TID 34 on executor > 0: ip-<blah>.ec2.internal (PROCESS_LOCAL)14/02/28 23:18:41 INFO > scheduler.TaskSetManager: Serialized task 23.0:0 as 4985 bytes in 1 ms14/02/28 > 23:18:41 WARN scheduler.TaskSetManager: Lost TID 34 (task 23.0:0)14/02/28 > 23:18:41 INFO scheduler.TaskSetManager: Loss was due to > java.net.SocketException: Connection reset [duplicate 2]14/02/28 23:18:41 > INFO scheduler.TaskSetManager: Starting task 23.0:0 as TID 35 on executor > 0: ip-<blah>.ec2.internal (PROCESS_LOCAL)14/02/28 23:18:41 INFO > scheduler.TaskSetManager: Serialized task 23.0:0 as 4985 bytes in 1 ms14/02/28 > 23:18:41 WARN scheduler.TaskSetManager: Lost TID 35 (task 23.0:0)14/02/28 > 23:18:41 INFO scheduler.TaskSetManager: Loss was due to > java.net.SocketException: Connection reset [duplicate 3]14/02/28 23:18:41 > ERROR scheduler.TaskSetManager: Task 23.0:0 failed 4 times; aborting > job14/02/28 > 23:18:41 INFO scheduler.TaskSchedulerImpl: Remove TaskSet 23.0 from pool > 14/02/28 > 23:18:41 INFO scheduler.DAGScheduler: Failed to run sortByKey at > <stdin>:1Traceback > (most recent call last): File "<stdin>", line 1, in <module> File > "/root/spark/python/pyspark/rdd.py", line 361, in sortByKey rddSize = > self.count() File "/root/spark/python/pyspark/rdd.py", line 542, in count > return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum() File > "/root/spark/python/pyspark/rdd.py", line 533, in sum return > self.mapPartitions(lambda x: [sum(x)]).reduce(operator.add) File > "/root/spark/python/pyspark/rdd.py", line 499, in reduce vals = > self.mapPartitions(func).collect() File > "/root/spark/python/pyspark/rdd.py", line 463, in collect bytesInJava > = self._jrdd.collect().iterator() File > "/root/spark/python/lib/py4j-0.8.1-src.zip/py4j/java_gateway.py", line 537, > in __call__ File > "/root/spark/python/lib/py4j-0.8.1-src.zip/py4j/protocol.py", line 300, in > get_return_valuepy4j.protocol.Py4JJavaError: An error occurred while > calling o332.collect.: org.apache.spark.SparkException: Job aborted: Task > 23.0:0 failed 4 times (most recent failure: Exception failure: > java.net.SocketException: Connection reset) at > org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1028) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1026) > at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at > scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) at > org.apache.spark.scheduler.DAGScheduler.org > $apache$spark$scheduler$DAGScheduler$$abortStage(DAGScheduler.scala:1026) at > org.apache.spark.scheduler.DAGScheduler$$anonfun$processEvent$10.apply(DAGScheduler.scala:619) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$processEvent$10.apply(DAGScheduler.scala:619) > at > scala.Option.foreach(Option.scala:236) at > org.apache.spark.scheduler.DAGScheduler.processEvent(DAGScheduler.scala:619) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$start$1$$anon$2$$anonfun$receive$1.applyOrElse(DAGScheduler.scala:207) > at > akka.actor.ActorCell.receiveMessage(ActorCell.scala:498) at > akka.actor.ActorCell.invoke(ActorCell.scala:456) at > akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237) at > akka.dispatch.Mailbox.run(Mailbox.scala:219) at > akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386) > at > scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) at > scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) > at > scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) at > scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) > >>> > > > The lambda passed to flatMap() returns a list of tuples; take() works fine > just on the flatMap(). > > Where would I start to troubleshoot this error? > > The error output includes mention of reset connections, so I naively > confirmed that the master node can reach its 1 slave. Dunno if those are > related things. > > If it matters any, I upgraded the cluster to Python 2.7 using the > instructions here <https://spark-project.atlassian.net/browse/SPARK-922>. > Also, I am running Spark 0.9.0, though I notice that in the error output is > mention of 0.8.1 files. > > Nick > > ------------------------------ > View this message in context: java.net.SocketException on reduceByKey() > in > pyspark<http://apache-spark-user-list.1001560.n3.nabble.com/java-net-SocketException-on-reduceByKey-in-pyspark-tp2184.html> > Sent from the Apache Spark User List mailing list > archive<http://apache-spark-user-list.1001560.n3.nabble.com/>at Nabble.com. >