Got a bit further, i think out of memory error was caused by setting spark.spill to false. Now i have this error, is there an easy way to increase file limit for spark, cluster-wide?:
java.io.FileNotFoundException: /tmp/spark-local-20140324074221-b8f1/01/temp_1ab674f9-4556-4239-9f21-688dfc9f17d2 (Too many open files) at java.io.FileOutputStream.openAppend(Native Method) at java.io.FileOutputStream.<init>(FileOutputStream.java:192) at org.apache.spark.storage.DiskBlockObjectWriter.open(BlockObjectWriter.scala:113) at org.apache.spark.storage.DiskBlockObjectWriter.write(BlockObjectWriter.scala:174) at org.apache.spark.util.collection.ExternalAppendOnlyMap.spill(ExternalAppendOnlyMap.scala:191) at org.apache.spark.util.collection.ExternalAppendOnlyMap.insert(ExternalAppendOnlyMap.scala:141) at org.apache.spark.Aggregator.combineValuesByKey(Aggregator.scala:59) at org.apache.spark.rdd.PairRDDFunctions$$anonfun$1.apply(PairRDDFunctions.scala:95) at org.apache.spark.rdd.PairRDDFunctions$$anonfun$1.apply(PairRDDFunctions.scala:94) at org.apache.spark.rdd.RDD$$anonfun$3.apply(RDD.scala:471) at org.apache.spark.rdd.RDD$$anonfun$3.apply(RDD.scala:471) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:34) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:241) at org.apache.spark.rdd.RDD.iterator(RDD.scala:232) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:161) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:102) at org.apache.spark.scheduler.Task.run(Task.scala:53) at org.apache.spark.executor.Executor$TaskRunner$$anonfun$run$1.apply$mcV$sp(Executor.scala:213) at org.apache.spark.deploy.SparkHadoopUtil.runAsUser(SparkHadoopUtil.scala:49) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:178) at java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908) at java.lang.Thread.run(Thread.java:662) -- View this message in context: http://apache-spark-user-list.1001560.n3.nabble.com/distinct-on-huge-dataset-tp3025p3084.html Sent from the Apache Spark User List mailing list archive at Nabble.com.