Hi all, I can read in Avro files to Spark with HadoopRDD and submit the schema in the jobConf, but with the guidance I've seen so far, I'm left with a avro GenericRecord of Java objects without type. How do I actually use the schema to have the types inferred?
Example: scala> AvroJob.setInputSchema(jobConf,schema); scala> val rdd = sc.hadoopRDD(jobConf,classOf[org.apache.avro.mapred.AvroInputFormat[Generic Record]],classOf[org.apache.avro.mapred.AvroWrapper[GenericRecord]],classOf [org.apache.hadoop.io.NullWritable],10) 14/07/29 09:27:49 INFO storage.MemoryStore: ensureFreeSpace(134254) called with curMem=0, maxMem=308713881 14/07/29 09:27:49 INFO storage.MemoryStore: Block broadcast_0 stored as values to memory (estimated size 131.1 KB, free 294.3 MB) rdd: org.apache.spark.rdd.RDD[(org.apache.avro.mapred.AvroWrapper[org.apache.avr o.generic.GenericRecord], org.apache.hadoop.io.NullWritable)] = HadoopRDD[0] at hadoopRDD at <console>:50 scala> rdd.first._1.datum.get("amt") 14/07/29 09:31:34 INFO spark.SparkContext: Starting job: first at <console>:53 14/07/29 09:31:34 INFO scheduler.DAGScheduler: Got job 3 (first at <console>:53) with 1 output partitions (allowLocal=true) 14/07/29 09:31:34 INFO scheduler.DAGScheduler: Final stage: Stage 3(first at <console>:53) 14/07/29 09:31:34 INFO scheduler.DAGScheduler: Parents of final stage: List() 14/07/29 09:31:34 INFO scheduler.DAGScheduler: Missing parents: List() 14/07/29 09:31:34 INFO scheduler.DAGScheduler: Computing the requested partition locally 14/07/29 09:31:34 INFO rdd.HadoopRDD: Input split: hdfs://nameservice1:8020/user/nylab/prod/persistent_tables/creditsetl_ref_e txns/201201/part-00000.avro:0+34279385 14/07/29 09:31:34 INFO spark.SparkContext: Job finished: first at <console>:53, took 0.061220615 s res11: Object = 24.0 Thanks! Ben ________________________________________________________ The information contained in this e-mail is confidential and/or proprietary to Capital One and/or its affiliates. The information transmitted herewith is intended only for use by the individual or entity to which it is addressed. If the reader of this message is not the intended recipient, you are hereby notified that any review, retransmission, dissemination, distribution, copying or other use of, or taking of any action in reliance upon this information is strictly prohibited. If you have received this communication in error, please contact the sender and delete the material from your computer.