Hi Nick, Can you check that the call to "collect()" works as well as "printSchema()"? I actually experience that "printSchema()" works fine, but then it crashes on "collect()".
In general, should I expect the master (which seems to be on branch-1.1) to be any more/less stable than branch-1.0? While it would be great to have this fixed, it would be good to know if I should expect lots of other instability. best, -Brad On Tue, Aug 5, 2014 at 4:15 PM, Nicholas Chammas <nicholas.cham...@gmail.com > wrote: > This looks to be fixed in master: > > >>> from pyspark.sql import SQLContext>>> sqlContext = SQLContext(sc) > >>> sc.parallelize(['{"foo":[[1,2,3], [4,5,6]]}', '{"foo":[[1,2,3], [4,5,6]]}' > ]) > ParallelCollectionRDD[5] at parallelize at PythonRDD.scala:315>>> > sqlContext.jsonRDD(sc.parallelize(['{"foo":[[1,2,3], [4,5,6]]}', > '{"foo":[[1,2,3], [4,5,6]]}'])) > MapPartitionsRDD[14] at mapPartitions at SchemaRDD.scala:408>>> > sqlContext.jsonRDD(sc.parallelize(['{"foo":[[1,2,3], [4,5,6]]}', > '{"foo":[[1,2,3], [4,5,6]]}'])).printSchema() > root > |-- foo: array (nullable = true) > | |-- element: array (containsNull = false) > | | |-- element: integer (containsNull = false) > > >>> > > Nick > > > > On Tue, Aug 5, 2014 at 7:12 PM, Brad Miller <bmill...@eecs.berkeley.edu> > wrote: > >> Hi All, >> >> I've built and deployed the current head of branch-1.0, but it seems to >> have only partly fixed the bug. >> >> This code now runs as expected with the indicated output: >> > srdd = sqlCtx.jsonRDD(sc.parallelize(['{"foo":[1,2,3]}', >> '{"foo":[4,5,6]}'])) >> > srdd.printSchema() >> root >> |-- foo: ArrayType[IntegerType] >> > srdd.collect() >> [{u'foo': [1, 2, 3]}, {u'foo': [4, 5, 6]}] >> >> This code still crashes: >> > srdd = sqlCtx.jsonRDD(sc.parallelize(['{"foo":[[1,2,3], [4,5,6]]}', >> '{"foo":[[1,2,3], [4,5,6]]}'])) >> > srdd.printSchema() >> root >> |-- foo: ArrayType[ArrayType(IntegerType)] >> > srdd.collect() >> Py4JJavaError: An error occurred while calling o63.collect. >> : org.apache.spark.SparkException: Job aborted due to stage failure: Task >> 3.0:29 failed 4 times, most recent failure: Exception failure in TID 67 on >> host kunitz.research.intel-research.net: >> net.razorvine.pickle.PickleException: couldn't introspect javabean: >> java.lang.IllegalArgumentException: wrong number of arguments >> >> I may be able to see if this is fixed in master, but since it's not fixed >> in 1.0.3 it seems unlikely to be fixed in master either. I previously tried >> master as well, but ran into a build problem that did not occur with the >> 1.0 branch. >> >> Can anybody else verify that the second example still crashes (and is >> meant to work)? If so, would it be best to modify JIRA-2376 or start a new >> bug? >> https://issues.apache.org/jira/browse/SPARK-2376 >> >> best, >> -Brad >> >> >> >> >> >> On Tue, Aug 5, 2014 at 12:10 PM, Brad Miller <bmill...@eecs.berkeley.edu> >> wrote: >> >>> Nick: Thanks for both the original JIRA bug report and the link. >>> >>> Michael: This is on the 1.0.1 release. I'll update to master and >>> follow-up if I have any problems. >>> >>> best, >>> -Brad >>> >>> >>> On Tue, Aug 5, 2014 at 12:04 PM, Michael Armbrust < >>> mich...@databricks.com> wrote: >>> >>>> Is this on 1.0.1? I'd suggest running this on master or the 1.1-RC >>>> which should be coming out this week. Pyspark did not have good support >>>> for nested data previously. If you still encounter issues using a more >>>> recent version, please file a JIRA. Thanks! >>>> >>>> >>>> On Tue, Aug 5, 2014 at 11:55 AM, Brad Miller < >>>> bmill...@eecs.berkeley.edu> wrote: >>>> >>>>> Hi All, >>>>> >>>>> I am interested to use jsonRDD and jsonFile to create a SchemaRDD out >>>>> of some JSON data I have, but I've run into some instability involving the >>>>> following java exception: >>>>> >>>>> An error occurred while calling o1326.collect. >>>>> : org.apache.spark.SparkException: Job aborted due to stage failure: >>>>> Task 181.0:29 failed 4 times, most recent failure: Exception failure in >>>>> TID >>>>> 1664 on host neal.research.intel-research.net: >>>>> net.razorvine.pickle.PickleException: couldn't introspect javabean: >>>>> java.lang.IllegalArgumentException: wrong number of arguments >>>>> >>>>> I've pasted code which produces the error as well as the full >>>>> traceback below. Note that I don't have any problem when I parse the JSON >>>>> myself and use inferSchema. >>>>> >>>>> Is anybody able to reproduce this bug? >>>>> >>>>> -Brad >>>>> >>>>> > srdd = sqlCtx.jsonRDD(sc.parallelize(['{"foo":"bar", >>>>> "baz":[1,2,3]}', '{"foo":"boom", "baz":[1,2,3]}'])) >>>>> > srdd.printSchema() >>>>> >>>>> root >>>>> |-- baz: ArrayType[IntegerType] >>>>> |-- foo: StringType >>>>> >>>>> > srdd.collect() >>>>> >>>>> >>>>> --------------------------------------------------------------------------- >>>>> Py4JJavaError Traceback (most recent call >>>>> last) >>>>> <ipython-input-89-ec7e8e8c68c4> in <module>() >>>>> ----> 1 srdd.collect() >>>>> >>>>> /home/spark/spark-1.0.1-bin-hadoop1/python/pyspark/rdd.py in >>>>> collect(self) >>>>> 581 """ >>>>> 582 with _JavaStackTrace(self.context) as st: >>>>> --> 583 bytesInJava = self._jrdd.collect().iterator() >>>>> 584 return >>>>> list(self._collect_iterator_through_file(bytesInJava)) >>>>> 585 >>>>> >>>>> /usr/local/lib/python2.7/dist-packages/py4j/java_gateway.pyc in >>>>> __call__(self, *args) >>>>> 535 answer = self.gateway_client.send_command(command) >>>>> 536 return_value = get_return_value(answer, >>>>> self.gateway_client, >>>>> --> 537 self.target_id, self.name) >>>>> 538 >>>>> 539 for temp_arg in temp_args: >>>>> >>>>> /usr/local/lib/python2.7/dist-packages/py4j/protocol.pyc in >>>>> get_return_value(answer, gateway_client, target_id, name) >>>>> 298 raise Py4JJavaError( >>>>> 299 'An error occurred while calling >>>>> {0}{1}{2}.\n'. >>>>> --> 300 format(target_id, '.', name), value) >>>>> 301 else: >>>>> 302 raise Py4JError( >>>>> >>>>> Py4JJavaError: An error occurred while calling o1326.collect. >>>>> : org.apache.spark.SparkException: Job aborted due to stage failure: >>>>> Task 181.0:29 failed 4 times, most recent failure: Exception failure in >>>>> TID >>>>> 1664 on host neal.research.intel-research.net: >>>>> net.razorvine.pickle.PickleException: couldn't introspect javabean: >>>>> java.lang.IllegalArgumentException: wrong number of arguments >>>>> net.razorvine.pickle.Pickler.put_javabean(Pickler.java:603) >>>>> net.razorvine.pickle.Pickler.dispatch(Pickler.java:299) >>>>> net.razorvine.pickle.Pickler.save(Pickler.java:125) >>>>> net.razorvine.pickle.Pickler.put_map(Pickler.java:322) >>>>> net.razorvine.pickle.Pickler.dispatch(Pickler.java:286) >>>>> net.razorvine.pickle.Pickler.save(Pickler.java:125) >>>>> >>>>> net.razorvine.pickle.Pickler.put_arrayOfObjects(Pickler.java:392) >>>>> net.razorvine.pickle.Pickler.dispatch(Pickler.java:195) >>>>> net.razorvine.pickle.Pickler.save(Pickler.java:125) >>>>> net.razorvine.pickle.Pickler.dump(Pickler.java:95) >>>>> net.razorvine.pickle.Pickler.dumps(Pickler.java:80) >>>>> >>>>> org.apache.spark.sql.SchemaRDD$anonfun$javaToPython$1$anonfun$apply$3.apply(SchemaRDD.scala:385) >>>>> >>>>> org.apache.spark.sql.SchemaRDD$anonfun$javaToPython$1$anonfun$apply$3.apply(SchemaRDD.scala:385) >>>>> scala.collection.Iterator$anon$11.next(Iterator.scala:328) >>>>> >>>>> org.apache.spark.api.python.PythonRDD$.writeIteratorToStream(PythonRDD.scala:294) >>>>> >>>>> org.apache.spark.api.python.PythonRDD$WriterThread$anonfun$run$1.apply$mcV$sp(PythonRDD.scala:200) >>>>> >>>>> org.apache.spark.api.python.PythonRDD$WriterThread$anonfun$run$1.apply(PythonRDD.scala:175) >>>>> >>>>> org.apache.spark.api.python.PythonRDD$WriterThread$anonfun$run$1.apply(PythonRDD.scala:175) >>>>> >>>>> org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1160) >>>>> >>>>> org.apache.spark.api.python.PythonRDD$WriterThread.run(PythonRDD.scala:174) >>>>> Driver stacktrace: >>>>> at org.apache.spark.scheduler.DAGScheduler.org >>>>> $apache$spark$scheduler$DAGScheduler$failJobAndIndependentStages(DAGScheduler.scala:1044) >>>>> at >>>>> org.apache.spark.scheduler.DAGScheduler$anonfun$abortStage$1.apply(DAGScheduler.scala:1028) >>>>> at >>>>> org.apache.spark.scheduler.DAGScheduler$anonfun$abortStage$1.apply(DAGScheduler.scala:1026) >>>>> at >>>>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) >>>>> at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) >>>>> at >>>>> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1026) >>>>> at >>>>> org.apache.spark.scheduler.DAGScheduler$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:634) >>>>> at >>>>> org.apache.spark.scheduler.DAGScheduler$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:634) >>>>> at scala.Option.foreach(Option.scala:236) >>>>> at >>>>> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:634) >>>>> at >>>>> org.apache.spark.scheduler.DAGSchedulerEventProcessActor$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1229) >>>>> at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498) >>>>> at akka.actor.ActorCell.invoke(ActorCell.scala:456) >>>>> at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237) >>>>> at akka.dispatch.Mailbox.run(Mailbox.scala:219) >>>>> at >>>>> akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386) >>>>> at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) >>>>> at >>>>> scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) >>>>> at >>>>> scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) >>>>> at >>>>> scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) >>>>> >>>> >>>> >>> >> >