Hi Jonathan,

Thanks for the reply. I ran other exercises (movie recommendation and GraphX) 
on the same cluster and did not see these errors. So I think this might not be 
related to the memory setting..

Thanks,
Forest
 
On Aug 24, 2014, at 10:27 AM, Jonathan Haddad <j...@jonhaddad.com> wrote:

> Could you be hitting this?  https://issues.apache.org/jira/browse/SPARK-3178
> 
> On Sun, Aug 24, 2014 at 10:21 AM, Forest D <dev24a...@gmail.com> wrote:
>> Hi folks,
>> 
>> I have been trying to run the AMPLab’s twitter streaming example
>> (http://ampcamp.berkeley.edu/big-data-mini-course/realtime-processing-with-spark-streaming.html)
>> in the last 2 days.I have encountered the same error messages as shown
>> below:
>> 
>> 14/08/24 17:14:22 ERROR client.AppClient$ClientActor: All masters are
>> unresponsive! Giving up.
>> 14/08/24 17:14:22 ERROR cluster.SparkDeploySchedulerBackend: Spark cluster
>> looks dead, giving up.
>> [error] (Thread-39) org.apache.spark.SparkException: Job aborted: Spark
>> cluster looks down
>> org.apache.spark.SparkException: Job aborted: Spark cluster looks down
>>    at
>> org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1028)
>>    at
>> org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1026)
>>    at
>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>>    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
>>    at
>> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$abortStage(DAGScheduler.scala:1026)
>>    at
>> org.apache.spark.scheduler.DAGScheduler$$anonfun$processEvent$10.apply(DAGScheduler.scala:619)
>>    at
>> org.apache.spark.scheduler.DAGScheduler$$anonfun$processEvent$10.apply(DAGScheduler.scala:619)
>>    at scala.Option.foreach(Option.scala:236)
>>    at
>> org.apache.spark.scheduler.DAGScheduler.processEvent(DAGScheduler.scala:619)
>>    at
>> org.apache.spark.scheduler.DAGScheduler$$anonfun$start$1$$anon$2$$anonfun$receive$1.applyOrElse(DAGScheduler.scala:207)
>>    at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
>>    at akka.actor.ActorCell.invoke(ActorCell.scala:456)
>>    at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
>>    at akka.dispatch.Mailbox.run(Mailbox.scala:219)
>>    at
>> akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
>>    at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:262)
>>    at
>> scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:975)
>>    at
>> scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1478)
>>    at
>> scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:104)
>> [trace] Stack trace suppressed: run last compile:run for the full output.
>> -------------------------------------------
>> Time: 1408900463000 ms
>> -------------------------------------------
>> 
>> 14/08/24 17:14:23 WARN scheduler.TaskSchedulerImpl: Initial job has not
>> accepted any resources; check your cluster UI to ensure that workers are
>> registered and have sufficient memory
>> -------------------------------------------
>> Time: 1408900464000 ms
>> -------------------------------------------
>> 
>> -------------------------------------------
>> Time: 1408900465000 ms
>> -------------------------------------------
>> 
>> -------------------------------------------
>> Time: 1408900466000 ms
>> -------------------------------------------
>> 
>> -------------------------------------------
>> Time: 1408900467000 ms
>> -------------------------------------------
>> 
>> -------------------------------------------
>> Time: 1408900468000 ms
>> -------------------------------------------
>> 
>> -------------------------------------------
>> Time: 1408900469000 ms
>> -------------------------------------------
>> 
>> -------------------------------------------
>> Time: 1408900470000 ms
>> -------------------------------------------
>> 
>> -------------------------------------------
>> Time: 1408900471000 ms
>> -------------------------------------------
>> 
>> -------------------------------------------
>> Time: 1408900472000 ms
>> -------------------------------------------
>> 
>> -------------------------------------------
>> Time: 1408900473000 ms
>> -------------------------------------------
>> 
>> -------------------------------------------
>> Time: 1408900474000 ms
>> -------------------------------------------
>> 
>> -------------------------------------------
>> Time: 1408900475000 ms
>> -------------------------------------------
>> 
>> -------------------------------------------
>> Time: 1408900476000 ms
>> -------------------------------------------
>> 
>> -------------------------------------------
>> Time: 1408900477000 ms
>> -------------------------------------------
>> 
>> -------------------------------------------
>> Time: 1408900478000 ms
>> -------------------------------------------
>> 
>> 14/08/24 17:14:38 WARN scheduler.TaskSchedulerImpl: Initial job has not
>> accepted any resources; check your cluster UI to ensure that workers are
>> registered and have sufficient memory
>> -------------------------------------------
>> Time: 1408900479000 ms
>> -------------------------------------------
>> 
>> -------------------------------------------
>> Time: 1408900480000 ms
>> -------------------------------------------
>> 
>> -------------------------------------------
>> Time: 1408900481000 ms
>> -------------------------------------------
>> 
>> -------------------------------------------
>> Time: 1408900482000 ms
>> -------------------------------------------
>> 
>> 14/08/24 17:14:42 ERROR client.AppClient$ClientActor: All masters are
>> unresponsive! Giving up.
>> -------------------------------------------
>> Time: 1408900483000 ms
>> -------------------------------------------
>> 
>> -------------------------------------------
>> Time: 1408900484000 ms
>> -------------------------------------------
>> 
>> 
>> I checked my cluster status and found 0 memory is used..
>> 
>> Workers: 5
>> Cores: 20 Total, 0 Used
>> Memory: 68.2 GB Total, 0.0 B Used
>> Applications: 0 Running, 0 Completed
>> Drivers: 0 Running, 0 Completed
>> 
>> Anyone can shed some light on this issue?
>> 
>> Thanks,
>> Senhua
> 
> 
> 
> -- 
> Jon Haddad
> http://www.rustyrazorblade.com
> twitter: rustyrazorblade
> 
> ---------------------------------------------------------------------
> To unsubscribe, e-mail: user-unsubscr...@spark.apache.org
> For additional commands, e-mail: user-h...@spark.apache.org
> 


---------------------------------------------------------------------
To unsubscribe, e-mail: user-unsubscr...@spark.apache.org
For additional commands, e-mail: user-h...@spark.apache.org

Reply via email to