Could you post the code that have problem with pyspark? thanks!

Davies

On Thu, Oct 16, 2014 at 12:27 PM, Gen <gen.tan...@gmail.com> wrote:
> I tried the same data with scala. It works pretty well.
> It seems that it is the problem of pyspark.
> In the console, it shows the following logs:
>
> Traceback (most recent call last):
>   File "<stdin>", line 1, in <module>
> *  File "/root/spark/python/pyspark/mllib/recommendation.py", line 76, in
> trainImplicit
> 14/10/16 19:22:44 WARN scheduler.TaskSetManager: Lost task 4.3 in stage
> 975.0 (TID 1653, ip-172-31-35-240.ec2.internal): TaskKilled (killed
> intentionally)
>     ratingBytes._jrdd, rank, iterations, lambda_, blocks, alpha)*
>   File "/root/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/java_gateway.py",
> line 538, in __call__
>   File "/root/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/protocol.py", line
> 300, in get_return_value
> py4j.protocol.Py4JJavaError14/10/16 19:22:44 WARN scheduler.TaskSetManager:
> Lost task 8.2 in stage 975.0 (TID 1650, ip-172-31-35-241.ec2.internal):
> TaskKilled (killed intentionally)
> : An error occurred while calling o32.trainImplicitALSModel.
> : org.apache.spark.SparkException: Job aborted due to stage failure: Task 6
> in stage 975.0 failed 4 times, most recent failure: Lost task 6.3 in stage
> 975.0 (TID 1651, ip-172-31-35-237.ec2.internal):
> com.esotericsoftware.kryo.KryoException: java.lang.ArrayStoreException:
> scala.collection.mutable.HashSet
> Serialization trace:
> shouldSend (org.apache.spark.mllib.recommendation.OutLinkBlock)
>
> com.esotericsoftware.kryo.serializers.FieldSerializer$ObjectField.read(FieldSerializer.java:626)
>
> com.esotericsoftware.kryo.serializers.FieldSerializer.read(FieldSerializer.java:221)
>         com.esotericsoftware.kryo.Kryo.readClassAndObject(Kryo.java:729)
>         com.twitter.chill.Tuple2Serializer.read(TupleSerializers.scala:43)
>         com.twitter.chill.Tuple2Serializer.read(TupleSerializers.scala:34)
>         com.esotericsoftware.kryo.Kryo.readClassAndObject(Kryo.java:729)
>
> org.apache.spark.serializer.KryoDeserializationStream.readObject(KryoSerializer.scala:133)
>
> org.apache.spark.serializer.DeserializationStream$$anon$1.getNext(Serializer.scala:133)
>         org.apache.spark.util.NextIterator.hasNext(NextIterator.scala:71)
>
> org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:39)
>         scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)
>
> org.apache.spark.util.collection.ExternalAppendOnlyMap.insertAll(ExternalAppendOnlyMap.scala:137)
>
> org.apache.spark.rdd.CoGroupedRDD$$anonfun$compute$5.apply(CoGroupedRDD.scala:159)
>
> org.apache.spark.rdd.CoGroupedRDD$$anonfun$compute$5.apply(CoGroupedRDD.scala:158)
>
> scala.collection.TraversableLike$WithFilter$$anonfun$foreach$1.apply(TraversableLike.scala:772)
>
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>         scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
>
> scala.collection.TraversableLike$WithFilter.foreach(TraversableLike.scala:771)
>         org.apache.spark.rdd.CoGroupedRDD.compute(CoGroupedRDD.scala:158)
>         org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
>         org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
>
> org.apache.spark.rdd.MappedValuesRDD.compute(MappedValuesRDD.scala:31)
>         org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
>         org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
>
> org.apache.spark.rdd.FlatMappedValuesRDD.compute(FlatMappedValuesRDD.scala:31)
>         org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
>         org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
>         org.apache.spark.rdd.FlatMappedRDD.compute(FlatMappedRDD.scala:33)
>         org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
>         org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:61)
>         org.apache.spark.rdd.RDD.iterator(RDD.scala:227)
>         org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:62)
>         org.apache.spark.scheduler.Task.run(Task.scala:54)
>
> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:177)
>
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>         java.lang.Thread.run(Thread.java:745)
> Driver stacktrace:
>         at
> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1185)
>         at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1174)
>         at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1173)
>         at
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>         at
> scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
>         at
> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1173)
>         at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:688)
>         at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:688)
>         at scala.Option.foreach(Option.scala:236)
>         at
> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:688)
>         at
> org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1391)
>         at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
>         at akka.actor.ActorCell.invoke(ActorCell.scala:456)
>         at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
>         at akka.dispatch.Mailbox.run(Mailbox.scala:219)
>         at
> akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
>         at
> scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
>         at
> scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
>         at
> scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
>         at
> scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
>
>>>> 14/10/16 19:22:44 WARN scheduler.TaskSetManager: Lost task 18.2 in stage
>>>> 975.0 (TID 1652, ip-172-31-35-241.ec2.internal): TaskKilled (killed
>>>> intentionally)
> 14/10/16 19:22:44 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 975.0,
> whose tasks have all completed, from pool
>
>
>
>
> Gen wrote
>> Hi,
>>
>> I am trying to use ALS.trainImplicit method in the
>> pyspark.mllib.recommendation. However it didn't work. So I tried use the
>> example in the python API documentation such as:
> /
>> r1 = (1, 1, 1.0)
>> r2 = (1, 2, 2.0)
>> r3 = (2, 1, 2.0)
>> ratings = sc.parallelize([r1, r2, r3])
>> model = ALS.trainImplicit(ratings, 1)
> /
>>
>> It didn't work neither. After searching in google, I found that there are
>> only two overloads for ALS.trainImplicit in the scala script. So I tried
> /
>> model = ALS.trainImplicit(ratings, 1, 1)
> /
>> , it worked. But if I set the iterations other than 1,
> /
>> model = ALS.trainImplicit(ratings, 1, 2)
> /
>>  or
> /
>> model = ALS.trainImplicit(ratings, 4, 2)
> /
>>  for example, it generated error. The information is as follows:
>>
>> count at ALS.scala:314
>>
>> Job aborted due to stage failure: Task 6 in stage 189.0 failed 4 times,
>> most recent failure: Lost task 6.3 in stage 189.0 (TID 626,
>> ip-172-31-35-239.ec2.internal): com.esotericsoftware.kryo.KryoException:
>> java.lang.ArrayStoreException: scala.collection.mutable.HashSet
>> Serialization trace:
>> shouldSend (org.apache.spark.mllib.recommendation.OutLinkBlock)
>>
>> com.esotericsoftware.kryo.serializers.FieldSerializer$ObjectField.read(FieldSerializer.java:626)
>>
>> com.esotericsoftware.kryo.serializers.FieldSerializer.read(FieldSerializer.java:221)
>>         com.esotericsoftware.kryo.Kryo.readClassAndObject(Kryo.java:729)
>>         com.twitter.chill.Tuple2Serializer.read(TupleSerializers.scala:43)
>>         com.twitter.chill.Tuple2Serializer.read(TupleSerializers.scala:34)
>>         com.esotericsoftware.kryo.Kryo.readClassAndObject(Kryo.java:729)
>>
>> org.apache.spark.serializer.KryoDeserializationStream.readObject(KryoSerializer.scala:133)
>>
>> org.apache.spark.serializer.DeserializationStream$$anon$1.getNext(Serializer.scala:133)
>>         org.apache.spark.util.NextIterator.hasNext(NextIterator.scala:71)
>>
>> org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:39)
>>         scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)
>>
>> org.apache.spark.util.collection.ExternalAppendOnlyMap.insertAll(ExternalAppendOnlyMap.scala:137)
>>
>> org.apache.spark.rdd.CoGroupedRDD$$anonfun$compute$5.apply(CoGroupedRDD.scala:159)
>>
>> org.apache.spark.rdd.CoGroupedRDD$$anonfun$compute$5.apply(CoGroupedRDD.scala:158)
>>
>> scala.collection.TraversableLike$WithFilter$$anonfun$foreach$1.apply(TraversableLike.scala:772)
>>
>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>>         scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
>>
>> scala.collection.TraversableLike$WithFilter.foreach(TraversableLike.scala:771)
>>         org.apache.spark.rdd.CoGroupedRDD.compute(CoGroupedRDD.scala:158)
>>         org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
>>         org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
>>
>> org.apache.spark.rdd.MappedValuesRDD.compute(MappedValuesRDD.scala:31)
>>         org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
>>         org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
>>
>> org.apache.spark.rdd.FlatMappedValuesRDD.compute(FlatMappedValuesRDD.scala:31)
>>         org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
>>         org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
>>         org.apache.spark.rdd.FlatMappedRDD.compute(FlatMappedRDD.scala:33)
>>         org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
>>         org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:61)
>>         org.apache.spark.rdd.RDD.iterator(RDD.scala:227)
>>         org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:62)
>>         org.apache.spark.scheduler.Task.run(Task.scala:54)
>>
>> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:177)
>>
>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>>
>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>>         java.lang.Thread.run(Thread.java:745)
>> Driver stacktrace:
>>
>> It is really strange, because count at ALS.scala:314 is already out the
>> loop of iterations. Any idea?
>> Thanks a lot for advance.
>>
>> FYI: I used spark 1.1.0 and ALS.train() works pretty well for all the
>> cases.
>
>
>
>
>
> --
> View this message in context: 
> http://apache-spark-user-list.1001560.n3.nabble.com/ALS-implicit-error-pyspark-tp16595p16607.html
> Sent from the Apache Spark User List mailing list archive at Nabble.com.
>
> ---------------------------------------------------------------------
> To unsubscribe, e-mail: user-unsubscr...@spark.apache.org
> For additional commands, e-mail: user-h...@spark.apache.org
>

---------------------------------------------------------------------
To unsubscribe, e-mail: user-unsubscr...@spark.apache.org
For additional commands, e-mail: user-h...@spark.apache.org

Reply via email to