Is that not exactly what I've done in j3/j4? The keys are identical strings.The k is the same, the value in both instances is an associative array.
devices = devices.map(lambda x: (dh.index('id'), {'deviceid': x[dh.index('id')], 'foo': x[dh.index('foo')], 'bar': x[dh.index('bar')]})) bytes_in_out = transactions.map(lambda x: (x[th.index('deviceid')], {'deviceid': x[th.index('deviceid')], 'foo': x[th.index('foo')], 'bar': x[th.index('bar')], 'hello': x[th.index('hello')], 'world': x[th.index('world')]})) j3 = bytes_in_out.join(devices, 10) j3.take(1) j4 = devices.join(bytes_int_out, 10) j4.take(1) ᐧ On Fri, Oct 17, 2014 at 5:48 PM, Davies Liu <dav...@databricks.com> wrote: > Hey Russell, > > join() can only work with RDD of pairs (key, value), such as > > rdd1: (k, v1) > rdd2: (k, v2) > > rdd1.join(rdd2) will be (k1, v1, v2) > > Spark SQL will be more useful for you, see > http://spark.apache.org/docs/1.1.0/sql-programming-guide.html > > Davies > > > On Fri, Oct 17, 2014 at 5:01 PM, Russell Jurney <russell.jur...@gmail.com> > wrote: > >> https://gist.github.com/rjurney/fd5c0110fe7eb686afc9 >> >> Any way I try to join my data fails. I can't figure out what I'm doing >> wrong. >> >> -- >> Russell Jurney twitter.com/rjurney russell.jur...@gmail.com datasyndrome. >> com >> ᐧ >> > > -- Russell Jurney twitter.com/rjurney russell.jur...@gmail.com datasyndrome.com