Can you show the DDL for the table? It looks like the SerDe might be saying it will produce a decimal type but is actually producing a string.
On Thu, Oct 23, 2014 at 3:17 PM, arthur.hk.c...@gmail.com < arthur.hk.c...@gmail.com> wrote: > Hi > > My Spark is 1.1.0 and Hive is 0.12, I tried to run the same query in both > Hive-0.12.0 then Spark-1.1.0, HiveQL works while SparkSQL failed. > > > hive> select l_orderkey, sum(l_extendedprice*(1-l_discount)) as revenue, > o_orderdate, o_shippriority from customer c join orders o on c.c_mktsegment > = 'BUILDING' and c.c_custkey = o.o_custkey join lineitem l on l.l_orderkey > = o.o_orderkey where o_orderdate < '1995-03-15' and l_shipdate > > '1995-03-15' group by l_orderkey, o_orderdate, o_shippriority order by > revenue desc, o_orderdate limit 10; > Ended Job = job_1414067367860_0011 > MapReduce Jobs Launched: > Job 0: Map: 1 Reduce: 1 Cumulative CPU: 2.0 sec HDFS Read: 261 HDFS > Write: 96 SUCCESS > Job 1: Map: 1 Reduce: 1 Cumulative CPU: 0.88 sec HDFS Read: 458 HDFS > Write: 0 SUCCESS > Total MapReduce CPU Time Spent: 2 seconds 880 msec > OK > Time taken: 38.771 seconds > > > scala> sqlContext.sql("""select l_orderkey, > sum(l_extendedprice*(1-l_discount)) as revenue, o_orderdate, o_shippriority > from customer c join orders o on c.c_mktsegment = 'BUILDING' and > c.c_custkey = o.o_custkey join lineitem l on l.l_orderkey = o.o_orderkey > where o_orderdate < '1995-03-15' and l_shipdate > '1995-03-15' group by > l_orderkey, o_orderdate, o_shippriority order by revenue desc, o_orderdate > limit 10""").collect().foreach(println); > org.apache.spark.SparkException: Job aborted due to stage failure: Task 14 > in stage 5.0 failed 4 times, most recent failure: Lost task 14.3 in stage > 5.0 (TID 568, m34): java.lang.ClassCastException: java.lang.String cannot > be cast to scala.math.BigDecimal > scala.math.Numeric$BigDecimalIsFractional$.minus(Numeric.scala:182) > > org.apache.spark.sql.catalyst.expressions.Subtract$$anonfun$eval$3.apply(arithmetic.scala:64) > > org.apache.spark.sql.catalyst.expressions.Subtract$$anonfun$eval$3.apply(arithmetic.scala:64) > > org.apache.spark.sql.catalyst.expressions.Expression.n2(Expression.scala:114) > > org.apache.spark.sql.catalyst.expressions.Subtract.eval(arithmetic.scala:64) > > org.apache.spark.sql.catalyst.expressions.Expression.n2(Expression.scala:108) > > org.apache.spark.sql.catalyst.expressions.Multiply.eval(arithmetic.scala:70) > > org.apache.spark.sql.catalyst.expressions.Coalesce.eval(nullFunctions.scala:47) > > org.apache.spark.sql.catalyst.expressions.Expression.n2(Expression.scala:108) > > org.apache.spark.sql.catalyst.expressions.Add.eval(arithmetic.scala:58) > > org.apache.spark.sql.catalyst.expressions.MutableLiteral.update(literals.scala:69) > > org.apache.spark.sql.catalyst.expressions.SumFunction.update(aggregates.scala:433) > > org.apache.spark.sql.execution.Aggregate$$anonfun$execute$1$$anonfun$7.apply(Aggregate.scala:167) > > org.apache.spark.sql.execution.Aggregate$$anonfun$execute$1$$anonfun$7.apply(Aggregate.scala:151) > org.apache.spark.rdd.RDD$$anonfun$13.apply(RDD.scala:596) > org.apache.spark.rdd.RDD$$anonfun$13.apply(RDD.scala:596) > > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) > org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) > org.apache.spark.rdd.RDD.iterator(RDD.scala:229) > > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) > org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) > org.apache.spark.rdd.RDD.iterator(RDD.scala:229) > > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:68) > > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) > org.apache.spark.scheduler.Task.run(Task.scala:54) > > org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:177) > > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) > > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) > java.lang.Thread.run(Thread.java:745) > Driver stacktrace: > at org.apache.spark.scheduler.DAGScheduler.org > $apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1185) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1174) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1173) > at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) > at > org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1173) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:688) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:688) > at scala.Option.foreach(Option.scala:236) > at > org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:688) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1391) > at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498) > at akka.actor.ActorCell.invoke(ActorCell.scala:456) > at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237) > at akka.dispatch.Mailbox.run(Mailbox.scala:219) > at > akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386) > at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) > at > scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) > at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) > at > scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) > > > Regards > Arthur > > > > > >