I am following the 1.1.0 document to run spark-shell in yarn client mode, just getting exceptions flooding out.
bin/spark-shell --master yarn-client Spark assembly has been built with Hive, including Datanucleus jars on classpath Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties Welcome to ____ __ / __/__ ___ _____/ /__ _\ \/ _ \/ _ `/ __/ '_/ /___/ .__/\_,_/_/ /_/\_\ version 1.2.0-SNAPSHOT /_/ Using Scala version 2.10.4 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_17) Type in expressions to have them evaluated. Type :help for more information. 14/11/12 05:44:55 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 14/11/12 05:42:05 ERROR OneForOneStrategy: java.lang.NullPointerException at org.apache.hadoop.yarn.util.RackResolver.coreResolve(RackResolver.java:101) at org.apache.hadoop.yarn.util.RackResolver.resolve(RackResolver.java:81) at org.apache.spark.deploy.yarn.YarnSparkHadoopUtil$.populateRackInfo(YarnSparkHadoopUtil.scala:197) at org.apache.spark.deploy.yarn.YarnSparkHadoopUtil$.lookupRack(YarnSparkHadoopUtil.scala:187) at org.apache.spark.scheduler.cluster.YarnClientClusterScheduler.getRackForHost(YarnClientClusterScheduler.scala:33) at org.apache.spark.scheduler.TaskSchedulerImpl$$anonfun$resourceOffers$1.apply(TaskSchedulerImpl.scala:229) at org.apache.spark.scheduler.TaskSchedulerImpl$$anonfun$resourceOffers$1.apply(TaskSchedulerImpl.scala:221) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) at org.apache.spark.scheduler.TaskSchedulerImpl.resourceOffers(TaskSchedulerImpl.scala:221) at org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend$DriverActor.makeOffers(CoarseGrainedSchedulerBackend.scala:156) at org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend$DriverActor$$anonfun$receiveWithLogging$1.applyOrElse(CoarseGrainedSchedulerBackend.scala:126) at scala.runtime.AbstractPartialFunction$mcVL$sp.apply$mcVL$sp(AbstractPartialFunction.scala:33) at scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:33) at scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:25) at org.apache.spark.util.ActorLogReceive$$anon$1.apply(ActorLogReceive.scala:53) at org.apache.spark.util.ActorLogReceive$$anon$1.apply(ActorLogReceive.scala:42) at scala.PartialFunction$class.applyOrElse(PartialFunction.scala:118) at org.apache.spark.util.ActorLogReceive$$anon$1.applyOrElse(ActorLogReceive.scala:42) at akka.actor.Actor$class.aroundReceive(Actor.scala:465) at org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend$DriverActor.aroundReceive(CoarseGrainedSchedulerBackend.scala:71) at akka.actor.ActorCell.receiveMessage(ActorCell.scala:516) at akka.actor.ActorCell.invoke(ActorCell.scala:487) at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:238) at akka.dispatch.Mailbox.run(Mailbox.scala:220) at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:393) at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) Have to clue what is wrong here. Please help! -- View this message in context: http://apache-spark-user-list.1001560.n3.nabble.com/spark-shell-exception-while-running-in-YARN-mode-tp18679.html Sent from the Apache Spark User List mailing list archive at Nabble.com. --------------------------------------------------------------------- To unsubscribe, e-mail: user-unsubscr...@spark.apache.org For additional commands, e-mail: user-h...@spark.apache.org