Hi Egor, Is it successful without dynamic allocation? From your log, it looks like the job is unable to acquire resources from YARN, which could be because other jobs are using up all the resources.
-Sandy On Fri, Nov 14, 2014 at 11:32 AM, Egor Pahomov <pahomov.e...@gmail.com> wrote: > Hi. > I execute ipython notebook + pyspark with spark.dynamicAllocation.enabled > = true. Task never ends. > Code: > > import sys > from random import random > from operator import add > partitions = 10 > n = 100000 * partitions > > def f(_): > x = random() * 2 - 1 > y = random() * 2 - 1 > return 1 if x ** 2 + y ** 2 < 1 else 0 > > count = sc.parallelize(xrange(1, n + 1), partitions).map(f).reduce(add) > print "Pi is roughly %f" % (4.0 * count / n) > > > > Run notebook: > > IPYTHON_ARGS="notebook --profile=ydf --port $IPYTHON_PORT --port-retries=0 > --ip='*' --no-browser" > pyspark \ > --verbose \ > --master yarn-client \ > --conf spark.driver.port=$((RANDOM_PORT + 2)) \ > --conf spark.broadcast.port=$((RANDOM_PORT + 3)) \ > --conf spark.replClassServer.port=$((RANDOM_PORT + 4)) \ > --conf spark.blockManager.port=$((RANDOM_PORT + 5)) \ > --conf spark.executor.port=$((RANDOM_PORT + 6)) \ > --conf spark.fileserver.port=$((RANDOM_PORT + 7)) \ > --conf spark.shuffle.service.enabled=true \ > --conf spark.dynamicAllocation.enabled=true \ > --conf spark.dynamicAllocation.minExecutors=1 \ > --conf spark.dynamicAllocation.maxExecutors=10 \ > --conf spark.ui.port=$SPARK_UI_PORT > > > Spark/Ipython log is in attachment. > > -- > > > > *Sincerely yoursEgor PakhomovScala Developer, Yandex* > > > --------------------------------------------------------------------- > To unsubscribe, e-mail: user-unsubscr...@spark.apache.org > For additional commands, e-mail: user-h...@spark.apache.org >