On Wed, Nov 19, 2014 at 2:13 PM, Anson Abraham <anson.abra...@gmail.com> wrote: > yeah but in this case i'm not building any files. just deployed out config > files in CDH5.2 and initiated a spark-shell to just read and output a file.
In that case it is a little bit weird. Just to be sure, you are using CDH's version of Spark, not trying to run an Apache Spark release on top of CDH, right? (If that's the case, then we could probably move this conversation to cdh-us...@cloudera.org, since it would be CDH-specific.) > On Wed Nov 19 2014 at 4:52:51 PM Marcelo Vanzin <van...@cloudera.com> wrote: >> >> Hi Anson, >> >> We've seen this error when incompatible classes are used in the driver >> and executors (e.g., same class name, but the classes are different >> and thus the serialized data is different). This can happen for >> example if you're including some 3rd party libraries in your app's >> jar, or changing the driver/executor class paths to include these >> conflicting libraries. >> >> Can you clarify whether any of the above apply to your case? >> >> (For example, one easy way to trigger this is to add the >> spark-examples jar shipped with CDH5.2 in the classpath of your >> driver. That's one of the reasons I filed SPARK-4048, but I digress.) >> >> >> On Tue, Nov 18, 2014 at 1:59 PM, Anson Abraham <anson.abra...@gmail.com> >> wrote: >> > I'm essentially loading a file and saving output to another location: >> > >> > val source = sc.textFile("/tmp/testfile.txt") >> > source.saveAsTextFile("/tmp/testsparkoutput") >> > >> > when i do so, i'm hitting this error: >> > 14/11/18 21:15:08 INFO DAGScheduler: Failed to run saveAsTextFile at >> > <console>:15 >> > org.apache.spark.SparkException: Job aborted due to stage failure: Task >> > 0 in >> > stage 0.0 failed 4 times, most recent failure: Lost task 0.3 in stage >> > 0.0 >> > (TID 6, cloudera-1.testdomain.net): java.lang.IllegalStateException: >> > unread >> > block data >> > >> > >> > java.io.ObjectInputStream$BlockDataInputStream.setBlockDataMode(ObjectInputStream.java:2421) >> > >> > java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1382) >> > >> > java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1990) >> > >> > java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1915) >> > >> > >> > java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798) >> > >> > java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350) >> > java.io.ObjectInputStream.readObject(ObjectInputStream.java:370) >> > >> > >> > org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:62) >> > >> > >> > org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:87) >> > >> > org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:162) >> > >> > >> > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) >> > >> > >> > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) >> > java.lang.Thread.run(Thread.java:744) >> > Driver stacktrace: >> > at >> > >> > org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1185) >> > at >> > >> > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1174) >> > at >> > >> > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1173) >> > at >> > >> > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) >> > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) >> > at >> > >> > org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1173) >> > at >> > >> > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:688) >> > at >> > >> > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:688) >> > at scala.Option.foreach(Option.scala:236) >> > at >> > >> > org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:688) >> > at >> > >> > org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1391) >> > at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498) >> > at akka.actor.ActorCell.invoke(ActorCell.scala:456) >> > at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237) >> > at akka.dispatch.Mailbox.run(Mailbox.scala:219) >> > at >> > >> > akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386) >> > at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) >> > at >> > >> > scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) >> > at >> > scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) >> > at >> > >> > scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) >> > >> > >> > Cant figure out what the issue is. I'm running in CDH5.2 w/ version of >> > spark being 1.1. The file i'm loading is literally just 7 MB. I >> > thought it >> > was jar files mismatch, but i did a compare and see they're all >> > identical. >> > But seeing as how they were all installed through CDH parcels, not sure >> > how >> > there would be version mismatch on the nodes and master. Oh yeah 1 >> > master >> > node w/ 2 worker nodes and running in standalone not through yarn. So >> > as a >> > just in case, i copied the jars from the master to the 2 worker nodes as >> > just in case, and still same issue. >> > Weird thing is, first time i installed and tested it out, it worked, but >> > now >> > it doesn't. >> > >> > Any help here would be greatly appreciated. >> >> >> >> -- >> Marcelo -- Marcelo --------------------------------------------------------------------- To unsubscribe, e-mail: user-unsubscr...@spark.apache.org For additional commands, e-mail: user-h...@spark.apache.org