Using TestSQLContext from multiple tests leads to:

SparkException: : Task not serializable

ERROR ContextCleaner: Error cleaning broadcast 10
java.lang.NullPointerException
        at 
org.apache.spark.broadcast.TorrentBroadcast$.unpersist(TorrentBroadcast.scala:246)
        at 
org.apache.spark.broadcast.TorrentBroadcastFactory.unbroadcast(TorrentBroadcastFactory.scala:46)
        at 
org.apache.spark.broadcast.BroadcastManager.unbroadcast(BroadcastManager.scala:66)
        at 
org.apache.spark.ContextCleaner.doCleanupBroadcast(ContextCleaner.scala:185)
        at 
org.apache.spark.ContextCleaner$$anonfun$org$apache$spark$ContextCleaner$$keepCleaning$1$$anonfun$apply$mcV$sp$2.apply(ContextCleaner.scala:147)
        at 
org.apache.spark.ContextCleaner$$anonfun$org$apache$spark$ContextCleaner$$keepCleaning$1$$anonfun$apply$mcV$sp$2.apply(ContextCleaner.scala:138)
        at scala.Option.foreach(Option.scala:236)


On 15.12.2014, at 22:36, Marius Soutier <mps....@gmail.com> wrote:

> Ok, maybe these test versions will help me then. I’ll check it out.
> 
> On 15.12.2014, at 22:33, Michael Armbrust <mich...@databricks.com> wrote:
> 
>> Using a single SparkContext should not cause this problem.  In the SQL tests 
>> we use TestSQLContext and TestHive which are global singletons for all of 
>> our unit testing.
>> 
>> On Mon, Dec 15, 2014 at 1:27 PM, Marius Soutier <mps....@gmail.com> wrote:
>> Possible, yes, although I’m trying everything I can to prevent it, i.e. fork 
>> in Test := true and isolated. Can you confirm that reusing a single 
>> SparkContext for multiple tests poses a problem as well?
>> 
>> Other than that, just switching from SQLContext to HiveContext also provoked 
>> the error.
>> 
>> 
>> On 15.12.2014, at 20:22, Michael Armbrust <mich...@databricks.com> wrote:
>> 
>>> Is it possible that you are starting more than one SparkContext in a single 
>>> JVM with out stopping previous ones?  I'd try testing with Spark 1.2, which 
>>> will throw an exception in this case.
>>> 
>>> On Mon, Dec 15, 2014 at 8:48 AM, Marius Soutier <mps....@gmail.com> wrote:
>>> Hi,
>>> 
>>> I’m seeing strange, random errors when running unit tests for my Spark 
>>> jobs. In this particular case I’m using Spark SQL to read and write Parquet 
>>> files, and one error that I keep running into is this one:
>>> 
>>> org.apache.spark.SparkException: Job aborted due to stage failure: Task 19 
>>> in stage 6.0 failed 1 times, most recent failure: Lost task 19.0 in stage 
>>> 6.0 (TID 223, localhost): java.io.IOException: PARSING_ERROR(2)
>>>         org.xerial.snappy.SnappyNative.throw_error(SnappyNative.java:78)
>>>         org.xerial.snappy.SnappyNative.uncompressedLength(Native Method)
>>>         org.xerial.snappy.Snappy.uncompressedLength(Snappy.java:545)
>>> 
>>> I can only prevent this from happening by using isolated Specs tests thats 
>>> always create a new SparkContext that is not shared between tests (but 
>>> there can also be only a single SparkContext per test), and also by using 
>>> standard SQLContext instead of HiveContext. It does not seem to have 
>>> anything to do with the actual files that I also create during the test run 
>>> with SQLContext.saveAsParquetFile.
>>> 
>>> 
>>> Cheers
>>> - Marius
>>> 
>>> 
>>> PS The full trace:
>>> 
>>> org.apache.spark.SparkException: Job aborted due to stage failure: Task 19 
>>> in stage 6.0 failed 1 times, most recent failure: Lost task 19.0 in stage 
>>> 6.0 (TID 223, localhost): java.io.IOException: PARSING_ERROR(2)
>>>         org.xerial.snappy.SnappyNative.throw_error(SnappyNative.java:78)
>>>         org.xerial.snappy.SnappyNative.uncompressedLength(Native Method)
>>>         org.xerial.snappy.Snappy.uncompressedLength(Snappy.java:545)
>>>         
>>> org.xerial.snappy.SnappyInputStream.readFully(SnappyInputStream.java:125)
>>>         
>>> org.xerial.snappy.SnappyInputStream.readHeader(SnappyInputStream.java:88)
>>>         
>>> org.xerial.snappy.SnappyInputStream.<init>(SnappyInputStream.java:58)
>>>         
>>> org.apache.spark.io.SnappyCompressionCodec.compressedInputStream(CompressionCodec.scala:128)
>>>         
>>> org.apache.spark.broadcast.TorrentBroadcast$.unBlockifyObject(TorrentBroadcast.scala:232)
>>>         
>>> org.apache.spark.broadcast.TorrentBroadcast$$anonfun$readObject$1.apply$mcV$sp(TorrentBroadcast.scala:169)
>>>         org.apache.spark.util.Utils$.tryOrIOException(Utils.scala:927)
>>>         
>>> org.apache.spark.broadcast.TorrentBroadcast.readObject(TorrentBroadcast.scala:155)
>>>         sun.reflect.GeneratedMethodAccessor5.invoke(Unknown Source)
>>>         
>>> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
>>>         java.lang.reflect.Method.invoke(Method.java:606)
>>>         
>>> java.io.ObjectStreamClass.invokeReadObject(ObjectStreamClass.java:1017)
>>>         
>>> java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1893)
>>>         
>>> java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798)
>>>         java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
>>>         
>>> java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1990)
>>>         
>>> java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1915)
>>>         
>>> java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798)
>>>         java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
>>>         java.io.ObjectInputStream.readObject(ObjectInputStream.java:370)
>>>         
>>> org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:62)
>>>         
>>> org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:87)
>>>         
>>> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:160)
>>>         
>>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>>>         
>>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>>>         java.lang.Thread.run(Thread.java:745)
>>> Driver stacktrace:
>>>         at 
>>> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1185)
>>>  ~[spark-core_2.10-1.1.1.jar:1.1.1]
>>>         at 
>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1174)
>>>  ~[spark-core_2.10-1.1.1.jar:1.1.1]
>>>         at 
>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1173)
>>>  ~[spark-core_2.10-1.1.1.jar:1.1.1]
>>>         at 
>>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>>>  ~[scala-library.jar:na]
>>>         at 
>>> scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) 
>>> ~[scala-library.jar:na]
>>>         at 
>>> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1173) 
>>> ~[spark-core_2.10-1.1.1.jar:1.1.1]
>>> ---------------------------------------------------------------------
>>> To unsubscribe, e-mail: user-unsubscr...@spark.apache.org
>>> For additional commands, e-mail: user-h...@spark.apache.org
>>> 
>> 
> 

Reply via email to