I use the 1.2 version. On Sun, Jan 4, 2015 at 3:01 AM, Josh Rosen <rosenvi...@gmail.com> wrote:
> Which version of Spark are you using? It seems like the issue here is > that the map output statuses are too large to fit in the Akka frame size. > This issue has been fixed in Spark 1.2 by using a different encoding for > map outputs for jobs with many reducers ( > https://issues.apache.org/jira/browse/SPARK-3613). On earlier Spark > versions, your options are either reducing the number of reducers (e.g. by > explicitly specifying the number of reducers in the reduceByKey() call) > or increasing the Akka frame size (via the spark.akka.frameSize > configuration option). > > On Sat, Jan 3, 2015 at 10:40 AM, Saeed Shahrivari < > saeed.shahriv...@gmail.com> wrote: > >> Hi, >> >> I am trying to get the frequency of each Unicode char in a document >> collection using Spark. Here is the code snippet that does the job: >> >> JavaPairRDD<LongWritable, Text> rows = sc.sequenceFile(args[0], >> LongWritable.class, Text.class); >> rows = rows.coalesce(10000); >> >> JavaPairRDD<Character,Long> pairs = rows.flatMapToPair(t -> { >> String content=t._2.toString(); >> Multiset<Character> chars= HashMultiset.create(); >> for(int i=0;i<content.length();i++) >> chars.add(content.charAt(i)); >> List<Tuple2<Character,Long>> list=new >> ArrayList<Tuple2<Character, Long>>(); >> for(Character ch:chars.elementSet()){ >> list.add(new >> Tuple2<Character,Long>(ch,(long)chars.count(ch))); >> } >> return list; >> }); >> >> JavaPairRDD<Character, Long> counts = pairs.reduceByKey((a, b) -> >> a >> + b); >> System.out.printf("MapCount %,d\n",counts.count()); >> >> But, I get the following exception: >> >> 15/01/03 21:51:34 ERROR MapOutputTrackerMasterActor: Map output statuses >> were 11141547 bytes which exceeds spark.akka.frameSize (10485760 bytes). >> org.apache.spark.SparkException: Map output statuses were 11141547 bytes >> which exceeds spark.akka.frameSize (10485760 bytes). >> at >> >> org.apache.spark.MapOutputTrackerMasterActor$$anonfun$receiveWithLogging$1.applyOrElse(MapOutputTracker.scala:59) >> at >> >> scala.runtime.AbstractPartialFunction$mcVL$sp.apply$mcVL$sp(AbstractPartialFunction.scala:33) >> at >> >> scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:33) >> at >> >> scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:25) >> at >> >> org.apache.spark.util.ActorLogReceive$$anon$1.apply(ActorLogReceive.scala:53) >> at >> >> org.apache.spark.util.ActorLogReceive$$anon$1.apply(ActorLogReceive.scala:42) >> at >> scala.PartialFunction$class.applyOrElse(PartialFunction.scala:118) >> at >> >> org.apache.spark.util.ActorLogReceive$$anon$1.applyOrElse(ActorLogReceive.scala:42) >> at akka.actor.Actor$class.aroundReceive(Actor.scala:465) >> at >> >> org.apache.spark.MapOutputTrackerMasterActor.aroundReceive(MapOutputTracker.scala:42) >> at akka.actor.ActorCell.receiveMessage(ActorCell.scala:516) >> at akka.actor.ActorCell.invoke(ActorCell.scala:487) >> at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:238) >> at akka.dispatch.Mailbox.run(Mailbox.scala:220) >> at >> >> akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:393) >> at >> scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) >> at >> >> scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) >> at >> scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) >> at >> >> scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) >> >> Would you please tell me where is the fault? >> If I process fewer rows, there is no problem. However, when the number of >> rows is large I always get this exception. >> >> Thanks beforehand. >> >> >> >> -- >> View this message in context: >> http://apache-spark-user-list.1001560.n3.nabble.com/spark-akka-frameSize-limit-error-tp20955.html >> Sent from the Apache Spark User List mailing list archive at Nabble.com. >> >> --------------------------------------------------------------------- >> To unsubscribe, e-mail: user-unsubscr...@spark.apache.org >> For additional commands, e-mail: user-h...@spark.apache.org >> >> >