The issue has been sensitive to the number of executors and input data
size. I'm using 2 executors with 4 cores each, 25GB of memory, 3800MB of
memory overhead for YARN. This will fit onto Amazon r3 instance types.
-Sven

On Tue, Jan 6, 2015 at 12:46 AM, Davies Liu <dav...@databricks.com> wrote:

> I had ran your scripts in 5 nodes ( 2 CPUs, 8G mem) cluster, can not
> reproduce your failure. Should I test it with big memory node?
>
> On Mon, Jan 5, 2015 at 4:00 PM, Sven Krasser <kras...@gmail.com> wrote:
> > Thanks for the input! I've managed to come up with a repro of the error
> with
> > test data only (and without any of the custom code in the original
> script),
> > please see here:
> > https://gist.github.com/skrasser/4bd7b41550988c8f6071#file-gistfile1-md
> >
> > The Gist contains a data generator and the script reproducing the error
> > (plus driver and executor logs). If I run using full cluster capacity (32
> > executors with 28GB), there are no issues. If I run on only two, the
> error
> > appears again and the job fails:
> >
> > org.apache.spark.SparkException: PairwiseRDD: unexpected value:
> > List([B@294b55b7)
> >
> >
> > Any thoughts or any obvious problems you can spot by any chance?
> >
> > Thank you!
> > -Sven
> >
> > On Sun, Jan 4, 2015 at 1:11 PM, Josh Rosen <rosenvi...@gmail.com> wrote:
> >>
> >> It doesn’t seem like there’s a whole lot of clues to go on here without
> >> seeing the job code.  The original "org.apache.spark.SparkException:
> >> PairwiseRDD: unexpected value: List([B@130dc7ad)” error suggests that
> maybe
> >> there’s an issue with PySpark’s serialization / tracking of types, but
> it’s
> >> hard to say from this error trace alone.
> >>
> >> On December 30, 2014 at 5:17:08 PM, Sven Krasser (kras...@gmail.com)
> >> wrote:
> >>
> >> Hey Josh,
> >>
> >> I am still trying to prune this to a minimal example, but it has been
> >> tricky since scale seems to be a factor. The job runs over ~720GB of
> data
> >> (the cluster's total RAM is around ~900GB, split across 32 executors).
> I've
> >> managed to run it over a vastly smaller data set without issues.
> Curiously,
> >> when I run it over slightly smaller data set of ~230GB (using sort-based
> >> shuffle), my job also fails, but I see no shuffle errors in the executor
> >> logs. All I see is the error below from the driver (this is also what
> the
> >> driver prints when erroring out on the large data set, but I assumed the
> >> executor errors to be the root cause).
> >>
> >> Any idea on where to look in the interim for more hints? I'll continue
> to
> >> try to get to a minimal repro.
> >>
> >> 2014-12-30 21:35:34,539 INFO
> >> [sparkDriver-akka.actor.default-dispatcher-14]
> >> spark.MapOutputTrackerMasterActor (Logging.scala:logInfo(59)) - Asked to
> >> send map output locations for shuffle 0 to
> >> sparkexecu...@ip-10-20-80-60.us-west-1.compute.internal:39739
> >> 2014-12-30 21:35:39,512 INFO
> >> [sparkDriver-akka.actor.default-dispatcher-17]
> >> spark.MapOutputTrackerMasterActor (Logging.scala:logInfo(59)) - Asked to
> >> send map output locations for shuffle 0 to
> >> sparkexecu...@ip-10-20-80-62.us-west-1.compute.internal:42277
> >> 2014-12-30 21:35:58,893 WARN
> >> [sparkDriver-akka.actor.default-dispatcher-16]
> >> remote.ReliableDeliverySupervisor (Slf4jLogger.scala:apply$mcV$sp(71)) -
> >> Association with remote system
> >> [akka.tcp://sparkyar...@ip-10-20-80-64.us-west-1.compute.internal:49584]
> has
> >> failed, address is now gated for [5000] ms. Reason is: [Disassociated].
> >> 2014-12-30 21:35:59,044 ERROR [Yarn application state monitor]
> >> cluster.YarnClientSchedulerBackend (Logging.scala:logError(75)) - Yarn
> >> application has already exited with state FINISHED!
> >> 2014-12-30 21:35:59,056 INFO  [Yarn application state monitor]
> >> handler.ContextHandler (ContextHandler.java:doStop(788)) - stopped
> >> o.e.j.s.ServletContextHandler{/stages/stage/kill,null}
> >>
> >> [...]
> >>
> >> 2014-12-30 21:35:59,111 INFO  [Yarn application state monitor]
> ui.SparkUI
> >> (Logging.scala:logInfo(59)) - Stopped Spark web UI at
> >> http://ip-10-20-80-37.us-west-1.compute.internal:4040
> >> 2014-12-30 21:35:59,130 INFO  [Yarn application state monitor]
> >> scheduler.DAGScheduler (Logging.scala:logInfo(59)) - Stopping
> DAGScheduler
> >> 2014-12-30 21:35:59,131 INFO  [Yarn application state monitor]
> >> cluster.YarnClientSchedulerBackend (Logging.scala:logInfo(59)) -
> Shutting
> >> down all executors
> >> 2014-12-30 21:35:59,132 INFO
> >> [sparkDriver-akka.actor.default-dispatcher-14]
> >> cluster.YarnClientSchedulerBackend (Logging.scala:logInfo(59)) - Asking
> each
> >> executor to shut down
> >> 2014-12-30 21:35:59,132 INFO  [Thread-2] scheduler.DAGScheduler
> >> (Logging.scala:logInfo(59)) - Job 1 failed: collect at
> >> /home/hadoop/test_scripts/test.py:63, took 980.751936 s
> >> Traceback (most recent call last):
> >>   File "/home/hadoop/test_scripts/test.py", line 63, in <module>
> >>     result = j.collect()
> >>   File "/home/hadoop/spark/python/pyspark/rdd.py", line 676, in collect
> >>     bytesInJava = self._jrdd.collect().iterator()
> >>   File
> >>
> "/home/hadoop/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/java_gateway.py",
> >> line 538, in __call__
> >>   File
> >> "/home/hadoop/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/protocol.py",
> line
> >> 300, in get_return_value
> >> py4j.protocol.Py4JJavaError2014-12-30 21:35:59,140 INFO  [Yarn
> application
> >> state monitor] cluster.YarnClientSchedulerBackend
> >> (Logging.scala:logInfo(59)) - Stopped
> >> : An error occurred while calling o117.collect.
> >> : org.apache.spark.SparkException: Job cancelled because SparkContext
> was
> >> shut down
> >>         at
> >>
> org.apache.spark.scheduler.DAGScheduler$$anonfun$cleanUpAfterSchedulerStop$1.apply(DAGScheduler.scala:702)
> >>         at
> >>
> org.apache.spark.scheduler.DAGScheduler$$anonfun$cleanUpAfterSchedulerStop$1.apply(DAGScheduler.scala:701)
> >>         at scala.collection.mutable.HashSet.foreach(HashSet.scala:79)
> >>         at
> >>
> org.apache.spark.scheduler.DAGScheduler.cleanUpAfterSchedulerStop(DAGScheduler.scala:701)
> >>         at
> >>
> org.apache.spark.scheduler.DAGSchedulerEventProcessActor.postStop(DAGScheduler.scala:1428)
> >>         at akka.actor.Actor$class.aroundPostStop(Actor.scala:475)
> >>         at
> >>
> org.apache.spark.scheduler.DAGSchedulerEventProcessActor.aroundPostStop(DAGScheduler.scala:1375)
> >>         at
> >>
> akka.actor.dungeon.FaultHandling$class.akka$actor$dungeon$FaultHandling$$finishTerminate(FaultHandling.scala:210)
> >>         at
> >>
> akka.actor.dungeon.FaultHandling$class.terminate(FaultHandling.scala:172)
> >>         at akka.actor.ActorCell.terminate(ActorCell.scala:369)
> >>         at akka.actor.ActorCell.invokeAll$1(ActorCell.scala:462)
> >>         at akka.actor.ActorCell.systemInvoke(ActorCell.scala:478)
> >>         at
> >> akka.dispatch.Mailbox.processAllSystemMessages(Mailbox.scala:263)
> >>         at akka.dispatch.Mailbox.run(Mailbox.scala:219)
> >>         at
> >>
> akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:393)
> >>         at
> >> scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
> >>         at
> >>
> scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
> >>         at
> >> scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
> >>         at
> >>
> scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
> >>
> >>
> >> Thank you!
> >> -Sven
> >>
> >>
> >> On Tue, Dec 30, 2014 at 12:15 PM, Josh Rosen <rosenvi...@gmail.com>
> wrote:
> >>>
> >>> Hi Sven,
> >>>
> >>> Do you have a small example program that you can share which will allow
> >>> me to reproduce this issue?  If you have a workload that runs into
> this, you
> >>> should be able to keep iteratively simplifying the job and reducing
> the data
> >>> set size until you hit a fairly minimal reproduction (assuming the
> issue is
> >>> deterministic, which it sounds like it is).
> >>>
> >>> On Tue, Dec 30, 2014 at 9:49 AM, Sven Krasser <kras...@gmail.com>
> wrote:
> >>>>
> >>>> Hey all,
> >>>>
> >>>> Since upgrading to 1.2.0 a pyspark job that worked fine in 1.1.1 fails
> >>>> during shuffle. I've tried reverting from the sort-based shuffle back
> to the
> >>>> hash one, and that fails as well. Does anyone see similar problems or
> has an
> >>>> idea on where to look next?
> >>>>
> >>>> For the sort-based shuffle I get a bunch of exception like this in the
> >>>> executor logs:
> >>>>
> >>>> 2014-12-30 03:13:04,061 ERROR [Executor task launch worker-2]
> >>>> executor.Executor (Logging.scala:logError(96)) - Exception in task
> 4523.0 in
> >>>> stage 1.0 (TID 4524)
> >>>> org.apache.spark.SparkException: PairwiseRDD: unexpected value:
> >>>> List([B@130dc7ad)
> >>>>         at
> >>>>
> org.apache.spark.api.python.PairwiseRDD$$anonfun$compute$2.apply(PythonRDD.scala:307)
> >>>>         at
> >>>>
> org.apache.spark.api.python.PairwiseRDD$$anonfun$compute$2.apply(PythonRDD.scala:305)
> >>>>         at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
> >>>>         at
> >>>>
> org.apache.spark.util.collection.ExternalSorter.insertAll(ExternalSorter.scala:219)
> >>>>         at
> >>>>
> org.apache.spark.shuffle.sort.SortShuffleWriter.write(SortShuffleWriter.scala:65)
> >>>>         at
> >>>>
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:68)
> >>>>         at
> >>>>
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
> >>>>         at org.apache.spark.scheduler.Task.run(Task.scala:56)
> >>>>         at
> >>>> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:196)
> >>>>         at
> >>>>
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
> >>>>         at
> >>>>
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
> >>>>         at java.lang.Thread.run(Thread.java:745)
> >>>>
> >>>>
> >>>> For the hash-based shuffle, there are now a bunch of these exceptions
> in
> >>>> the logs:
> >>>>
> >>>>
> >>>> 2014-12-30 04:14:01,688 ERROR [Executor task launch worker-0]
> >>>> executor.Executor (Logging.scala:logError(96)) - Exception in task
> 4479.0 in
> >>>> stage 1.0 (TID 4480)
> >>>> java.io.FileNotFoundException:
> >>>>
> /mnt/var/lib/hadoop/tmp/nm-local-dir/usercache/hadoop/appcache/application_1419905501183_0004/spark-local-20141230035728-8fc0/23/merged_shuffle_1_68_0
> >>>> (No such file or directory)
> >>>>         at java.io.FileOutputStream.open(Native Method)
> >>>>         at java.io.FileOutputStream.<init>(FileOutputStream.java:221)
> >>>>         at
> >>>>
> org.apache.spark.storage.DiskBlockObjectWriter.open(BlockObjectWriter.scala:123)
> >>>>         at
> >>>>
> org.apache.spark.storage.DiskBlockObjectWriter.write(BlockObjectWriter.scala:192)
> >>>>         at
> >>>>
> org.apache.spark.shuffle.hash.HashShuffleWriter$$anonfun$write$1.apply(HashShuffleWriter.scala:67)
> >>>>         at
> >>>>
> org.apache.spark.shuffle.hash.HashShuffleWriter$$anonfun$write$1.apply(HashShuffleWriter.scala:65)
> >>>>         at scala.collection.Iterator$class.foreach(Iterator.scala:727)
> >>>>         at
> >>>> scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
> >>>>         at
> >>>>
> org.apache.spark.shuffle.hash.HashShuffleWriter.write(HashShuffleWriter.scala:65)
> >>>>         at
> >>>>
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:68)
> >>>>         at
> >>>>
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
> >>>>         at org.apache.spark.scheduler.Task.run(Task.scala:56)
> >>>>         at
> >>>> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:196)
> >>>>         at
> >>>>
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
> >>>>         at
> >>>>
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
> >>>>         at java.lang.Thread.run(Thread.java:745)
> >>>>
> >>>>
> >>>> Thank you!
> >>>> -Sven
> >>>>
> >>>>
> >>>>
> >>>> --
> >>>> http://sites.google.com/site/krasser/?utm_source=sig
> >>>
> >>>
> >>
> >>
> >>
> >> --
> >> http://sites.google.com/site/krasser/?utm_source=sig
> >
> >
> >
> >
> > --
> > http://sites.google.com/site/krasser/?utm_source=sig
>



-- 
http://sites.google.com/site/krasser/?utm_source=sig

Reply via email to