For YARN, possibly this one ? <property> <name>yarn.nodemanager.local-dirs</name> <value>/hadoop/yarn/local</value> </property>
Cheers On Thu, Mar 19, 2015 at 2:21 PM, Marcelo Vanzin <van...@cloudera.com> wrote: > IIRC you have to set that configuration on the Worker processes (for > standalone). The app can't override it (only for a client-mode > driver). YARN has a similar configuration, but I don't know the name > (shouldn't be hard to find, though). > > On Thu, Mar 19, 2015 at 11:56 AM, Davies Liu <dav...@databricks.com> > wrote: > > Is it possible that `spark.local.dir` is overriden by others? The docs > say: > > > > NOTE: In Spark 1.0 and later this will be overriden by > > SPARK_LOCAL_DIRS (Standalone, Mesos) or LOCAL_DIRS (YARN) > > > > On Sat, Mar 14, 2015 at 5:29 PM, Peng Xia <sparkpeng...@gmail.com> > wrote: > >> Hi Sean, > >> > >> Thank very much for your reply. > >> I tried to config it from below code: > >> > >> sf = SparkConf().setAppName("test").set("spark.executor.memory", > >> "45g").set("spark.cores.max", 62),set("spark.local.dir", "C:\\tmp") > >> > >> But still get the error. > >> Do you know how I can config this? > >> > >> > >> Thanks, > >> Best, > >> Peng > >> > >> > >> On Sat, Mar 14, 2015 at 3:41 AM, Sean Owen <so...@cloudera.com> wrote: > >>> > >>> It means pretty much what it says. You ran out of space on an executor > >>> (not driver), because the dir used for serialization temp files is > >>> full (not all volumes). Set spark.local.dirs to something more > >>> appropriate and larger. > >>> > >>> On Sat, Mar 14, 2015 at 2:10 AM, Peng Xia <sparkpeng...@gmail.com> > wrote: > >>> > Hi > >>> > > >>> > > >>> > I was running a logistic regression algorithm on a 8 nodes spark > >>> > cluster, > >>> > each node has 8 cores and 56 GB Ram (each node is running a windows > >>> > system). > >>> > And the spark installation driver has 1.9 TB capacity. The dataset I > was > >>> > training on are has around 40 million records with around 6600 > features. > >>> > But > >>> > I always get this error during the training process: > >>> > > >>> > Py4JJavaError: An error occurred while calling > >>> > o70.trainLogisticRegressionModelWithLBFGS. > >>> > : org.apache.spark.SparkException: Job aborted due to stage failure: > >>> > Task > >>> > 2709 in stage 3.0 failed 4 times, most recent failure: Lost task > 2709.3 > >>> > in > >>> > stage 3.0 (TID 2766, > >>> > workernode0.rbaHdInsightCluster5.b6.internal.cloudapp.net): > >>> > java.io.IOException: There is not enough space on the disk > >>> > at java.io.FileOutputStream.writeBytes(Native Method) > >>> > at java.io.FileOutputStream.write(FileOutputStream.java:345) > >>> > at > >>> > java.io.BufferedOutputStream.write(BufferedOutputStream.java:122) > >>> > at > >>> > > >>> > > org.xerial.snappy.SnappyOutputStream.dumpOutput(SnappyOutputStream.java:300) > >>> > at > >>> > > >>> > > org.xerial.snappy.SnappyOutputStream.rawWrite(SnappyOutputStream.java:247) > >>> > at > >>> > > org.xerial.snappy.SnappyOutputStream.write(SnappyOutputStream.java:107) > >>> > at > >>> > > >>> > > java.io.ObjectOutputStream$BlockDataOutputStream.drain(ObjectOutputStream.java:1876) > >>> > at > >>> > > >>> > > java.io.ObjectOutputStream$BlockDataOutputStream.writeByte(ObjectOutputStream.java:1914) > >>> > at > >>> > > >>> > > java.io.ObjectOutputStream.writeFatalException(ObjectOutputStream.java:1575) > >>> > at > >>> > java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:350) > >>> > at > >>> > > >>> > > org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:42) > >>> > at > >>> > > >>> > > org.apache.spark.serializer.SerializationStream.writeAll(Serializer.scala:110) > >>> > at > >>> > > >>> > > org.apache.spark.storage.BlockManager.dataSerializeStream(BlockManager.scala:1177) > >>> > at > >>> > org.apache.spark.storage.DiskStore.putIterator(DiskStore.scala:78) > >>> > at > >>> > org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:787) > >>> > at > >>> > > >>> > > org.apache.spark.storage.BlockManager.putIterator(BlockManager.scala:638) > >>> > at > >>> > > org.apache.spark.CacheManager.putInBlockManager(CacheManager.scala:145) > >>> > at > >>> > org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:70) > >>> > at org.apache.spark.rdd.RDD.iterator(RDD.scala:243) > >>> > at > >>> > org.apache.spark.rdd.FilteredRDD.compute(FilteredRDD.scala:34) > >>> > at > >>> > org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:278) > >>> > at org.apache.spark.rdd.RDD.iterator(RDD.scala:245) > >>> > at > >>> > org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:61) > >>> > at org.apache.spark.scheduler.Task.run(Task.scala:56) > >>> > at > >>> > org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:200) > >>> > at > >>> > > >>> > > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) > >>> > at > >>> > > >>> > > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) > >>> > at java.lang.Thread.run(Thread.java:745) > >>> > > >>> > Driver stacktrace: > >>> > at > >>> > > >>> > org.apache.spark.scheduler.DAGScheduler.org > $apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1214) > >>> > at > >>> > > >>> > > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1203) > >>> > at > >>> > > >>> > > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1202) > >>> > at > >>> > > >>> > > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > >>> > at > >>> > scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) > >>> > at > >>> > > >>> > > org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1202) > >>> > at > >>> > > >>> > > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:696) > >>> > at > >>> > > >>> > > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:696) > >>> > at scala.Option.foreach(Option.scala:236) > >>> > at > >>> > > >>> > > org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:696) > >>> > at > >>> > > >>> > > org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1420) > >>> > at akka.actor.Actor$class.aroundReceive(Actor.scala:465) > >>> > at > >>> > > >>> > > org.apache.spark.scheduler.DAGSchedulerEventProcessActor.aroundReceive(DAGScheduler.scala:1375) > >>> > at akka.actor.ActorCell.receiveMessage(ActorCell.scala:516) > >>> > at akka.actor.ActorCell.invoke(ActorCell.scala:487) > >>> > at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:238) > >>> > at akka.dispatch.Mailbox.run(Mailbox.scala:220) > >>> > at > >>> > > >>> > > akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:393) > >>> > at > >>> > scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) > >>> > at > >>> > > >>> > > scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) > >>> > at > >>> > > scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) > >>> > at > >>> > > >>> > > scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) > >>> > > >>> > The code is below: > >>> > > >>> > from pyspark.mllib.regression import LabeledPoint > >>> > from pyspark.mllib.classification import LogisticRegressionWithSGD > >>> > from numpy import array > >>> > from sklearn.feature_extraction import FeatureHasher > >>> > from pyspark import SparkContext > >>> > sf = SparkConf().setAppName("test").set("spark.executor.memory", > >>> > "45g").set("spark.cores.max", 62) > >>> > sc = SparkContext(conf=sf) > >>> > training_file = sc.textFile("train_small.txt") > >>> > def hash_feature(line): > >>> > values = [0, dict()] > >>> > for index, x in enumerate(line.strip("\n").split('\t')): > >>> > if index == 0: > >>> > values[0] = float(x) > >>> > else: > >>> > values[1][str(index)+"_"+x] = 1 > >>> > return values > >>> > n_feature = 2**14 > >>> > hasher = FeatureHasher(n_features=n_feature) > >>> > training_file_hashed = training_file.map(lambda line: > >>> > [hash_feature(line)[0], hasher.transform([hash_feature(line)[1]])]) > >>> > def build_lable_points(line): > >>> > values = [0.0] * n_feature > >>> > for index, value in zip(line[1].indices, line[1].data): > >>> > values[index] = value > >>> > return LabeledPoint(line[0], values) > >>> > parsed_training_data = training_file_hashed.map(lambda line: > >>> > build_lable_points(line)) > >>> > model = LogisticRegressionWithSGD.train(parsed_training_data) > >>> > > >>> > Can anyone share any experience on this? > >> > >> > > > > --------------------------------------------------------------------- > > To unsubscribe, e-mail: user-unsubscr...@spark.apache.org > > For additional commands, e-mail: user-h...@spark.apache.org > > > > > > -- > Marcelo > > --------------------------------------------------------------------- > To unsubscribe, e-mail: user-unsubscr...@spark.apache.org > For additional commands, e-mail: user-h...@spark.apache.org > >