We have very large processing being done on Hadoop (400 M/r Jobs, 1 Day duration, 100s of TB data, 100s of joins). We are exploring Spark as alternative to speed up our processing time. We use Scala + Scoobie today and Avro is the data format across steps.
I observed a strange behavior, i read sample data (avro format, 10 records) and i collect it and print each record. All the data for each element within a record is wiped out and i only see data of first element being copied for everything. Is this a problem with Spark ? Or with using Avro ? Example: I took that RDD run through it and printed 4 elements from it, they all printed correctly. val x = viEvents.map { case (itemId, event) => println(event.get("guid"), itemId, event.get("itemId"), event.get("siteId")) (itemId, event) } The above code prints (27c9fbc014b4f61526f0574001b73b00,261197590161,261197590161,3) (27c9fbc014b4f61526f0574001b73b00,261197590161,261197590161,3) (27c9fbc014b4f61526f0574001b73b00,261197590161,261197590161,3) (340da8c014a46272c0c8c830011c3bf0,221733319941,221733319941,77) (340da8c014a46272c0c8c830011c3bf0,181704048554,181704048554,77) (340da8c014a46272c0c8c830011c3bf0,231524481696,231524481696,77) (340da8c014a46272c0c8c830011c3bf0,271830464992,271830464992,77) (393938d71480a2aaf8e440d1fff709f4,141586046141,141586046141,0) (3a792a7c14c0a35882346c04fff4e236,161605492016,161605492016,0) (3a792a7c14c0a35882346c04fff4e236,161605492016,161605492016,0) viEvents.collect.foreach(a => println(a._2.get("guid"), a._1, a._2.get("itemId"), a._2.get("siteId"))) *Now, i collected it, this might have lead to serialization of the RDD.* Now when i print the same 4 elements, *i only get guid values for all. Has this got something to do with serialization ?* (27c9fbc014b4f61526f0574001b73b00,261197590161,27c9fbc014b4f61526f0574001b73b00,27c9fbc014b4f61526f0574001b73b00) (27c9fbc014b4f61526f0574001b73b00,261197590161,27c9fbc014b4f61526f0574001b73b00,27c9fbc014b4f61526f0574001b73b00) (27c9fbc014b4f61526f0574001b73b00,261197590161,27c9fbc014b4f61526f0574001b73b00,27c9fbc014b4f61526f0574001b73b00) (340da8c014a46272c0c8c830011c3bf0,221733319941,340da8c014a46272c0c8c830011c3bf0,340da8c014a46272c0c8c830011c3bf0) (340da8c014a46272c0c8c830011c3bf0,181704048554,340da8c014a46272c0c8c830011c3bf0,340da8c014a46272c0c8c830011c3bf0) (340da8c014a46272c0c8c830011c3bf0,231524481696,340da8c014a46272c0c8c830011c3bf0,340da8c014a46272c0c8c830011c3bf0) (340da8c014a46272c0c8c830011c3bf0,271830464992,340da8c014a46272c0c8c830011c3bf0,340da8c014a46272c0c8c830011c3bf0) (393938d71480a2aaf8e440d1fff709f4,141586046141,393938d71480a2aaf8e440d1fff709f4,393938d71480a2aaf8e440d1fff709f4) (3a792a7c14c0a35882346c04fff4e236,161605492016,3a792a7c14c0a35882346c04fff4e236,3a792a7c14c0a35882346c04fff4e236) (3a792a7c14c0a35882346c04fff4e236,161605492016,3a792a7c14c0a35882346c04fff4e236,3a792a7c14c0a35882346c04fff4e236) The RDD is of type org.apache.spark.rdd.RDD[(Long, com.ebay.ep.poc.spark.reporting.process.detail.model.DetailInputRecord)] At the time of context creation i did this val conf = new SparkConf() .setAppName(detail) .set("spark.serializer", "org.apache.spark.serializer.*KryoSerializer* ") .set("spark.kryoserializer.buffer.mb", arguments.get("buffersize").get) .set("spark.kryoserializer.buffer.max.mb", arguments.get("maxbuffersize").get) .set("spark.driver.maxResultSize", arguments.get("maxResultSize").get) .set("spark.yarn.maxAppAttempts", "1") .registerKryoClasses(Array(classOf[com.ebay.ep.poc.spark.reporting.process.model.dw.SpsLevelMetricSum], classOf[com.ebay.ep.poc.spark.reporting.process.detail.model.DetailInputRecord], classOf[com.ebay.ep.poc.spark.reporting.process.detail.model.InputRecord], classOf[com.ebay.ep.poc.spark.reporting.process.model.SessionRecord], classOf[com.ebay.ep.poc.spark.reporting.process.model.DataRecord], classOf[com.ebay.ep.poc.spark.reporting.process.model.ExperimentationRecord])) The class heirarchy is DetailInputRecord extends InputRecord extends SessionRecord extends ExperimentationRecord extends org.apache.avro.generic.GenericRecord.Record(schema: Schema) Please suggest. -- Deepak