Hi Ayan, If you want to use DataFrame, then you should use the Pipelines API (org.apache.spark.ml.*) which will take DataFrames: http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.ml.recommendation.ALS
In the examples/ directory for ml/, you can find a MovieLensALS example. Good luck! Joseph On Tue, Apr 21, 2015 at 4:58 AM, ayan guha <guha.a...@gmail.com> wrote: > Hi > > I am getting an error > > Also, I am getting an error in mlib.ALS.train function when passing > dataframe (do I need to convert the DF to RDD?) > > Code: > training = ssc.sql("select userId,movieId,rating from ratings where > partitionKey < 6").cache() > print type(training) > model = ALS.train(training,rank,numIter,lmbda) > > Error: > <class 'pyspark.sql.dataframe.DataFrame'> > > Traceback (most recent call last): > File "D:\Project\Spark\code\movie_sql.py", line 109, in <module> > bestConf = getBestModel(sc,ssc,training,validation,validationNoRating) > File "D:\Project\Spark\code\movie_sql.py", line 54, in getBestModel > model = ALS.train(trainingRDD,rank,numIter,lmbda) > File > "D:\spark\spark-1.3.1-bin-hadoop2.6\spark-1.3.1-bin-hadoop2.6\spark-1.3.1-bin-hadoop2.6\python\pyspark\mllib\recommendation.py", > line 139, in train > model = callMLlibFunc("trainALSModel", cls._prepare(ratings), rank, > iterations, > File > "D:\spark\spark-1.3.1-bin-hadoop2.6\spark-1.3.1-bin-hadoop2.6\spark-1.3.1-bin-hadoop2.6\python\pyspark\mllib\recommendation.py", > line 127, in _prepare > assert isinstance(ratings, RDD), "ratings should be RDD" > AssertionError: ratings should be RDD > > It was working fine in 1.2.0 (till last night :)) > > Any solution? I am thinking to map the training dataframe back to a RDD, > byt will lose the schema information. > > Best > Ayan > > On Mon, Apr 20, 2015 at 10:23 PM, ayan guha <guha.a...@gmail.com> wrote: > >> Hi >> Just upgraded to Spark 1.3.1. >> >> I am getting an warning >> >> Warning (from warnings module): >> File >> "D:\spark\spark-1.3.1-bin-hadoop2.6\spark-1.3.1-bin-hadoop2.6\spark-1.3.1-bin-hadoop2.6\python\pyspark\sql\context.py", >> line 191 >> warnings.warn("inferSchema is deprecated, please use createDataFrame >> instead") >> UserWarning: inferSchema is deprecated, please use createDataFrame instead >> >> However, documentation still says to use inferSchema. >> Here: http://spark.apache.org/docs/latest/sql-programming-guide.htm in >> section >> >> Also, I am getting an error in mlib.ALS.train function when passing >> dataframe (do I need to convert the DF to RDD?) >> >> Code: >> training = ssc.sql("select userId,movieId,rating from ratings where >> partitionKey < 6").cache() >> print type(training) >> model = ALS.train(training,rank,numIter,lmbda) >> >> Error: >> <class 'pyspark.sql.dataframe.DataFrame'> >> Rank:8 Lmbda:1.0 iteration:10 >> >> Traceback (most recent call last): >> File "D:\Project\Spark\code\movie_sql.py", line 109, in <module> >> bestConf = getBestModel(sc,ssc,training,validation,validationNoRating) >> File "D:\Project\Spark\code\movie_sql.py", line 54, in getBestModel >> model = ALS.train(trainingRDD,rank,numIter,lmbda) >> File >> "D:\spark\spark-1.3.1-bin-hadoop2.6\spark-1.3.1-bin-hadoop2.6\spark-1.3.1-bin-hadoop2.6\python\pyspark\mllib\recommendation.py", >> line 139, in train >> model = callMLlibFunc("trainALSModel", cls._prepare(ratings), rank, >> iterations, >> File >> "D:\spark\spark-1.3.1-bin-hadoop2.6\spark-1.3.1-bin-hadoop2.6\spark-1.3.1-bin-hadoop2.6\python\pyspark\mllib\recommendation.py", >> line 127, in _prepare >> assert isinstance(ratings, RDD), "ratings should be RDD" >> AssertionError: ratings should be RDD >> >> -- >> Best Regards, >> Ayan Guha >> > > > > -- > Best Regards, > Ayan Guha >