End of the month is the target:
https://cwiki.apache.org/confluence/display/SPARK/Wiki+Homepage

On Thu, May 14, 2015 at 3:45 AM, Ishwardeep Singh <
[email protected]> wrote:

>  Hi Michael & Ayan,
>
>
>
> Thank you for your response to my problem.
>
>
>
> Michael do we have a tentative release date for Spark version 1.4?
>
>
>
> Regards,
>
> Ishwardeep
>
>
>
>
>
> *From:* Michael Armbrust [mailto:[email protected]]
> *Sent:* Wednesday, May 13, 2015 10:54 PM
> *To:* ayan guha
> *Cc:* Ishwardeep Singh; user
> *Subject:* Re: [Spark SQL 1.3.1] data frame saveAsTable returns exception
>
>
>
> I think this is a bug in our date handling that should be fixed in Spark
> 1.4.
>
>
>
> On Wed, May 13, 2015 at 8:23 AM, ayan guha <[email protected]> wrote:
>
> Your stack trace says it can't convert date to integer. You sure about
> column positions?
>
> On 13 May 2015 21:32, "Ishwardeep Singh" <[email protected]>
> wrote:
>
> Hi ,
>
> I am using Spark SQL 1.3.1.
>
> I have created a dataFrame using jdbc data source and am using
> saveAsTable()
> method but got the following 2 exceptions:
>
> java.lang.RuntimeException: Unsupported datatype DecimalType()
>         at scala.sys.package$.error(package.scala:27)
>         at
>
> org.apache.spark.sql.parquet.ParquetTypesConverter$$anonfun$fromDataType$2.apply(ParquetTypes.scala:372)
>         at
>
> org.apache.spark.sql.parquet.ParquetTypesConverter$$anonfun$fromDataType$2.apply(ParquetTypes.scala:316)
>         at scala.Option.getOrElse(Option.scala:120)
>         at
>
> org.apache.spark.sql.parquet.ParquetTypesConverter$.fromDataType(ParquetTypes.scala:315)
>         at
>
> org.apache.spark.sql.parquet.ParquetTypesConverter$$anonfun$4.apply(ParquetTypes.scala:395)
>         at
>
> org.apache.spark.sql.parquet.ParquetTypesConverter$$anonfun$4.apply(ParquetTypes.scala:394)
>         at
>
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
>         at
>
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
>         at scala.collection.immutable.List.foreach(List.scala:318)
>         at
> scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
>         at scala.collection.AbstractTraversable.map(Traversable.scala:105)
>         at
>
> org.apache.spark.sql.parquet.ParquetTypesConverter$.convertFromAttributes(ParquetTypes.scala:393)
>         at
>
> org.apache.spark.sql.parquet.ParquetTypesConverter$.writeMetaData(ParquetTypes.scala:440)
>         at
>
> org.apache.spark.sql.parquet.ParquetRelation2$MetadataCache.prepareMetadata(newParquet.scala:260)
>         at
>
> org.apache.spark.sql.parquet.ParquetRelation2$MetadataCache$$anonfun$6.apply(newParquet.scala:276)
>         at
>
> org.apache.spark.sql.parquet.ParquetRelation2$MetadataCache$$anonfun$6.apply(newParquet.scala:269)
>         at
>
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
>         at
>
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
>         at scala.collection.immutable.List.foreach(List.scala:318)
>         at
> scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
>         at scala.collection.AbstractTraversable.map(Traversable.scala:105)
>         at
>
> org.apache.spark.sql.parquet.ParquetRelation2$MetadataCache.refresh(newParquet.scala:269)
>         at
> org.apache.spark.sql.parquet.ParquetRelation2.<init>(newParquet.scala:391)
>         at
>
> org.apache.spark.sql.parquet.DefaultSource.createRelation(newParquet.scala:98)
>         at
>
> org.apache.spark.sql.parquet.DefaultSource.createRelation(newParquet.scala:128)
>         at
> org.apache.spark.sql.sources.ResolvedDataSource$.apply(ddl.scala:240)
>         at
>
> org.apache.spark.sql.hive.execution.CreateMetastoreDataSourceAsSelect.run(commands.scala:218)
>         at
>
> org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult$lzycompute(commands.scala:54)
>         at
>
> org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult(commands.scala:54)
>         at
> org.apache.spark.sql.execution.ExecutedCommand.execute(commands.scala:64)
>         at
>
> org.apache.spark.sql.SQLContext$QueryExecution.toRdd$lzycompute(SQLContext.scala:1099)
>         at
> org.apache.spark.sql.SQLContext$QueryExecution.toRdd(SQLContext.scala:1099)
>         at org.apache.spark.sql.DataFrame.saveAsTable(DataFrame.scala:1121)
>         at org.apache.spark.sql.DataFrame.saveAsTable(DataFrame.scala:1071)
>         at org.apache.spark.sql.DataFrame.saveAsTable(DataFrame.scala:1037)
>         at org.apache.spark.sql.DataFrame.saveAsTable(DataFrame.scala:1015)
>
> java.lang.ClassCastException: java.sql.Date cannot be cast to
> java.lang.Integer
>         at scala.runtime.BoxesRunTime.unboxToInt(BoxesRunTime.java:106)
>         at
>
> org.apache.spark.sql.parquet.RowWriteSupport.writePrimitive(ParquetTableSupport.scala:215)
>         at
>
> org.apache.spark.sql.parquet.RowWriteSupport.writeValue(ParquetTableSupport.scala:192)
>         at
>
> org.apache.spark.sql.parquet.RowWriteSupport.write(ParquetTableSupport.scala:171)
>         at
>
> org.apache.spark.sql.parquet.RowWriteSupport.write(ParquetTableSupport.scala:134)
>         at
>
> parquet.hadoop.InternalParquetRecordWriter.write(InternalParquetRecordWriter.java:120)
>         at
> parquet.hadoop.ParquetRecordWriter.write(ParquetRecordWriter.java:81)
>         at
> parquet.hadoop.ParquetRecordWriter.write(ParquetRecordWriter.java:37)
>         at
> org.apache.spark.sql.parquet.ParquetRelation2.org
> $apache$spark$sql$parquet$ParquetRelation2$$writeShard$1(newParquet.scala:671)
>         at
>
> org.apache.spark.sql.parquet.ParquetRelation2$$anonfun$insert$2.apply(newParquet.scala:689)
>         at
>
> org.apache.spark.sql.parquet.ParquetRelation2$$anonfun$insert$2.apply(newParquet.scala:689)
>         at
> org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:61)
>         at org.apache.spark.scheduler.Task.run(Task.scala:64)
>         at
> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:203)
>         at
>
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>         at
>
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>         at java.lang.Thread.run(Thread.java:722)
>
> Earlier I was using Spark SQL 1.3.0 and was getting some other exception so
> I upgraded to 1.3.1 but got a different exception.
>
> Any help would be appreciated
> Regards,
> Ishwardeep
>
>
>
>
> --
> View this message in context:
> http://apache-spark-user-list.1001560.n3.nabble.com/Spark-SQL-1-3-1-data-frame-saveAsTable-returns-exception-tp22867.html
> Sent from the Apache Spark User List mailing list archive at Nabble.com.
>
> ---------------------------------------------------------------------
> To unsubscribe, e-mail: [email protected]
> For additional commands, e-mail: [email protected]
>
>
>
> ------------------------------
>
>
>
>
>
>
> NOTE: This message may contain information that is confidential,
> proprietary, privileged or otherwise protected by law. The message is
> intended solely for the named addressee. If received in error, please
> destroy and notify the sender. Any use of this email is prohibited when
> received in error. Impetus does not represent, warrant and/or guarantee,
> that the integrity of this communication has been maintained nor that the
> communication is free of errors, virus, interception or interference.
>

Reply via email to