Hi, I've worked out how to use explode on my input avro dataset with the following structure root |-- pageViewId: string (nullable = false) |-- components: array (nullable = true) | |-- element: struct (containsNull = false) | | |-- name: string (nullable = false) | | |-- loadTimeMs: long (nullable = true)
I'm trying to turn this into this layout with repeated pageViewIds for each row of my components: root |-- pageViewId: string (nullable = false) |-- name: string (nullable = false) |-- loadTimeMs: long (nullable = true) Explode words fine for the first 10 records using this bit of code, but my big problem is that loadTimeMs has nulls in it, which I think is causing the error. Any ideas how I can trap those nulls? Perhaps by converting to zeros and then I can deal with them later? I tried writing a udf which just takes the loadTimeMs column and swaps nulls for zeros, but this separates the struct and then I don't know how to use explode. avroFile.filter($"lazyComponents.components".isNotNull) .explode($"lazyComponents.components") { case Row(lazyComponents: Seq[Row]) => lazyComponents .map(x => x.getString(0) -> x.getLong(1))} .select('pageViewId, '_1, '_2) .take(10).foreach(println) 15/06/04 12:01:21 ERROR Executor: Exception in task 0.0 in stage 19.0 (TID 65) java.lang.RuntimeException: Failed to check null bit for primitive long value. at scala.sys.package$.error(package.scala:27) at org.apache.spark.sql.catalyst.expressions.GenericRow.getLong(rows.scala:87) at $line127.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$anonfun$1$$anonfun$apply$1.apply(<console>:33) at $line127.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$anonfun$1$$anonfun$apply$1.apply(<console>:33) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33) at scala.collection.mutable.WrappedArray.foreach(WrappedArray.scala:34) at scala.collection.TraversableLike$class.map(TraversableLike.scala:244) at scala.collection.AbstractTraversable.map(Traversable.scala:105) at $line127.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$anonfun$1.apply(<console>:33) at $line127.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$anonfun$1.apply(<console>:33) at scala.Function1$$anonfun$andThen$1.apply(Function1.scala:55) at org.apache.spark.sql.catalyst.expressions.UserDefinedGenerator.eval(generators.scala:89) at org.apache.spark.sql.execution.Generate$$anonfun$2$$anonfun$apply$1.apply(Generate.scala:71) at org.apache.spark.sql.execution.Generate$$anonfun$2$$anonfun$apply$1.apply(Generate.scala:70) at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371) at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:308) at scala.collection.Iterator$class.foreach(Iterator.scala:727) at scala.collection.AbstractIterator.foreach(Iterator.scala:1157) at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48) at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103) at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47) at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273) at scala.collection.AbstractIterator.to(Iterator.scala:1157) at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265) at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157) at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252) at scala.collection.AbstractIterator.toArray(Iterator.scala:1157) at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:122) at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:122) at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1498) at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1498) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:61) at org.apache.spark.scheduler.Task.run(Task.scala:64) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:203) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) at java.lang.Thread.run(Thread.java:744)