Here is what I get on branch-1.5:

x = sc.parallelize([dict(k=1, v="Evert"), dict(k=2, v="Erik")]).toDF()
y = sc.parallelize([dict(k=1, v="Ruud"), dict(k=3, v="Vincent")]).toDF()
x.registerTempTable('x')
y.registerTempTable('y')
sqlContext.sql("select y.v, x.v FROM x INNER JOIN y ON x.k=y.k").collect()

Out[1]: [Row(v=u'Ruud', v=u'Evert')]

On Fri, Sep 11, 2015 at 3:14 AM, Evert Lammerts <evert.lamme...@gmail.com>
wrote:

> Am I overlooking something? This doesn't seem right:
>
> x = sc.parallelize([dict(k=1, v="Evert"), dict(k=2, v="Erik")]).toDF()
> y = sc.parallelize([dict(k=1, v="Ruud"), dict(k=3, v="Vincent")]).toDF()
> x.registerTempTable('x')
> y.registerTempTable('y')
> sqlContext.sql("select y.v, x.v FROM x INNER JOIN y ON x.k=y.k").collect()
>
> Out[26]: [Row(v=u'Evert', v=u'Evert')]
>
> May just be because I'm behind; I'm on:
>
> Spark 1.5.0-SNAPSHOT (git revision 27ef854) built for Hadoop 2.6.0 Build
> flags: -Pyarn -Psparkr -Phadoop-2.6 -Dhadoop.version=2.6.0 -Phive
> -Phive-thriftserver -DskipTests
>
> Can somebody check whether the above code does work on the latest release?
>
> Thanks!
> Evert
>

Reply via email to