Here is what I get on branch-1.5: x = sc.parallelize([dict(k=1, v="Evert"), dict(k=2, v="Erik")]).toDF() y = sc.parallelize([dict(k=1, v="Ruud"), dict(k=3, v="Vincent")]).toDF() x.registerTempTable('x') y.registerTempTable('y') sqlContext.sql("select y.v, x.v FROM x INNER JOIN y ON x.k=y.k").collect()
Out[1]: [Row(v=u'Ruud', v=u'Evert')] On Fri, Sep 11, 2015 at 3:14 AM, Evert Lammerts <evert.lamme...@gmail.com> wrote: > Am I overlooking something? This doesn't seem right: > > x = sc.parallelize([dict(k=1, v="Evert"), dict(k=2, v="Erik")]).toDF() > y = sc.parallelize([dict(k=1, v="Ruud"), dict(k=3, v="Vincent")]).toDF() > x.registerTempTable('x') > y.registerTempTable('y') > sqlContext.sql("select y.v, x.v FROM x INNER JOIN y ON x.k=y.k").collect() > > Out[26]: [Row(v=u'Evert', v=u'Evert')] > > May just be because I'm behind; I'm on: > > Spark 1.5.0-SNAPSHOT (git revision 27ef854) built for Hadoop 2.6.0 Build > flags: -Pyarn -Psparkr -Phadoop-2.6 -Dhadoop.version=2.6.0 -Phive > -Phive-thriftserver -DskipTests > > Can somebody check whether the above code does work on the latest release? > > Thanks! > Evert >