Not a bad idea I suspect but doesn't help me. I dumbed down the repro to ask for help. In reality one of my dataframes is a cassandra DF. So cassDF.registerTempTable("df1") registers the temp table in a different SQL Context (new CassandraSQLContext(sc)).
scala> sql("select customer_id, uri, browser, epoch from df union all select customer_id, uri, browser, epoch from df1").show() org.apache.spark.sql.AnalysisException: no such table df1; line 1 pos 103 at org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.failAnalysis(package.scala:42) at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.getTable(Analyzer.scala:225) at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$7.applyOrElse(Analyzer.scala:233) at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$7.applyOrElse(Analyzer.scala:229) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:222) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:222) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:51) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:221) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:242) On Fri, Oct 30, 2015 at 3:34 PM, Ted Yu <yuzhih...@gmail.com> wrote: > How about the following ? > > scala> df.registerTempTable("df") > scala> df1.registerTempTable("df1") > scala> sql("select customer_id, uri, browser, epoch from df union select > customer_id, uri, browser, epoch from df1").show() > +-----------+-------------+-------+-----+ > |customer_id| uri|browser|epoch| > +-----------+-------------+-------+-----+ > | 999|http://foobar|firefox| 1234| > | 888|http://foobar| ie|12343| > +-----------+-------------+-------+-----+ > > Cheers > > On Fri, Oct 30, 2015 at 12:11 PM, Yana Kadiyska <yana.kadiy...@gmail.com> > wrote: > >> Hi folks, >> >> I have a need to "append" two dataframes -- I was hoping to use UnionAll >> but it seems that this operation treats the underlying dataframes as >> sequence of columns, rather than a map. >> >> In particular, my problem is that the columns in the two DFs are not in >> the same order --notice that my customer_id somehow comes out a string: >> >> This is Spark 1.4.1 >> >> case class Test(epoch: Long,browser:String,customer_id:Int,uri:String) >> val test = Test(1234l,"firefox",999,"http://foobar") >> >> case class Test1( customer_id :Int, uri:String, browser:String, >> epoch :Long) >> val test1 = Test1(888,"http://foobar","ie",12343) >> val df=sc.parallelize(Seq(test)).toDF >> val df1=sc.parallelize(Seq(test1)).toDF >> df.unionAll(df1) >> >> //res2: org.apache.spark.sql.DataFrame = [epoch: bigint, browser: string, >> customer_id: string, uri: string] >> >> >> >> Is unionAll the wrong operation? Any special incantations? Or advice on >> how to otherwise get this to succeeed? >> > >