Hi

You can use newAPIHadoopFile and use AvroInputFormat.

On Sun, Dec 6, 2015 at 4:59 AM, YaoPau <jonrgr...@gmail.com> wrote:

> Here's what I'm currently trying:
>
> --------------------------------------
> I'm including --packages com.databricks:spark-avro_2.10:1.0.0 in my pyspark
> call.  This seems to work:
>
> Ivy Default Cache set to: /home/jrgregg/.ivy2/cache
> The jars for the packages stored in: /home/jrgregg/.ivy2/jars
> :: loading settings :: url =
>
> jar:file:/opt/cloudera/parcels/CDH-5.4.4-1.cdh5.4.4.p894.568/jars/spark-assembly-1.3.0-cdh5.4.4-hadoop2.6.0-cdh5.4.4.jar!/org/apache/ivy/core/settings/ivysettings.xml
> com.databricks#spark-avro_2.10 added as a dependency
> :: resolving dependencies :: org.apache.spark#spark-submit-parent;1.0
>         confs: [default]
>         found com.databricks#spark-avro_2.10;1.0.0 in central
>         found org.apache.avro#avro;1.7.6 in central
>         found org.codehaus.jackson#jackson-core-asl;1.9.13 in central
>         found org.codehaus.jackson#jackson-mapper-asl;1.9.13 in central
>         found com.thoughtworks.paranamer#paranamer;2.3 in central
>         found org.xerial.snappy#snappy-java;1.0.5 in central
>         found org.apache.commons#commons-compress;1.4.1 in central
>         found org.tukaani#xz;1.0 in central
>         found org.slf4j#slf4j-api;1.6.4 in central
> :: resolution report :: resolve 629ms :: artifacts dl 22ms
>         :: modules in use:
>         com.databricks#spark-avro_2.10;1.0.0 from central in [default]
>         com.thoughtworks.paranamer#paranamer;2.3 from central in [default]
>         org.apache.avro#avro;1.7.6 from central in [default]
>         org.apache.commons#commons-compress;1.4.1 from central in [default]
>         org.codehaus.jackson#jackson-core-asl;1.9.13 from central in
> [default]
>         org.codehaus.jackson#jackson-mapper-asl;1.9.13 from central in
> [default]
>         org.slf4j#slf4j-api;1.6.4 from central in [default]
>         org.tukaani#xz;1.0 from central in [default]
>         org.xerial.snappy#snappy-java;1.0.5 from central in [default]
>
> ---------------------------------------------------------------------
>         |                  |            modules            ||   artifacts
>  |
>         |       conf       | number| search|dwnlded|evicted||
> number|dwnlded|
>
> ---------------------------------------------------------------------
>         |      default     |   9   |   0   |   0   |   0   ||   9   |   0
>  |
>
> ---------------------------------------------------------------------
> :: retrieving :: org.apache.spark#spark-submit-parent
>         confs: [default]
>         0 artifacts copied, 9 already retrieved (0kB/12ms)
>
> --------------------------------------
>
> Then in my code I have:
>
> df.repartition(partitions).save(save_avro, "com.databricks.spark.avro")
>
> This results in:
>
> ---------------------------------------------------------------------------
> Py4JJavaError                             Traceback (most recent call last)
> <ipython-input-33-8a02829528e8> in <module>()
> ----> 1 schemaBirf.repartition(partitions).save(save_avro,
> "com.databricks.spark.avro")
>
> /opt/cloudera/parcels/CDH/lib/spark/python/pyspark/sql/dataframe.py in
> save(self, path, source, mode, **options)
>     215         joptions = MapConverter().convert(options,
>     216
> self._sc._gateway._gateway_client)
> --> 217         self._jdf.save(source, jmode, joptions)
>     218
>     219     @property
>
>
> /opt/cloudera/parcels/CDH/lib/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/java_gateway.py
> in __call__(self, *args)
>     536         answer = self.gateway_client.send_command(command)
>     537         return_value = get_return_value(answer,
> self.gateway_client,
> --> 538                 self.target_id, self.name)
>     539
>     540         for temp_arg in temp_args:
>
>
> /opt/cloudera/parcels/CDH/lib/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/protocol.py
> in get_return_value(answer, gateway_client, target_id, name)
>     298                 raise Py4JJavaError(
>     299                     'An error occurred while calling {0}{1}{2}.\n'.
> --> 300                     format(target_id, '.', name), value)
>     301             else:
>     302                 raise Py4JError(
>
> Py4JJavaError: An error occurred while calling o127.save.
> : java.lang.NoClassDefFoundError:
> org/apache/spark/sql/sources/HadoopFsRelationProvider
>         at java.lang.ClassLoader.defineClass1(Native Method)
>         at java.lang.ClassLoader.defineClass(ClassLoader.java:800)
>         at
> java.security.SecureClassLoader.defineClass(SecureClassLoader.java:142)
>         at java.net.URLClassLoader.defineClass(URLClassLoader.java:449)
>         at java.net.URLClassLoader.access$100(URLClassLoader.java:71)
>         at java.net.URLClassLoader$1.run(URLClassLoader.java:361)
>         at java.net.URLClassLoader$1.run(URLClassLoader.java:355)
>         at java.security.AccessController.doPrivileged(Native Method)
>         at java.net.URLClassLoader.findClass(URLClassLoader.java:354)
>         at java.lang.ClassLoader.loadClass(ClassLoader.java:425)
>         at java.lang.ClassLoader.loadClass(ClassLoader.java:358)
>         at
>
> org.apache.spark.sql.sources.ResolvedDataSource$.lookupDataSource(ddl.scala:265)
>         at
> org.apache.spark.sql.sources.ResolvedDataSource$.apply(ddl.scala:305)
>         at org.apache.spark.sql.DataFrame.save(DataFrame.scala:1123)
>         at org.apache.spark.sql.DataFrame.save(DataFrame.scala:1108)
>         at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
>         at
>
> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
>         at
>
> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
>         at java.lang.reflect.Method.invoke(Method.java:606)
>         at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
>         at
> py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:379)
>         at py4j.Gateway.invoke(Gateway.java:259)
>         at
> py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
>         at py4j.commands.CallCommand.execute(CallCommand.java:79)
>         at py4j.GatewayConnection.run(GatewayConnection.java:207)
>         at java.lang.Thread.run(Thread.java:745)
> Caused by: java.lang.ClassNotFoundException:
> org.apache.spark.sql.sources.HadoopFsRelationProvider
>         at java.net.URLClassLoader$1.run(URLClassLoader.java:366)
>         at java.net.URLClassLoader$1.run(URLClassLoader.java:355)
>         at java.security.AccessController.doPrivileged(Native Method)
>         at java.net.URLClassLoader.findClass(URLClassLoader.java:354)
>         at java.lang.ClassLoader.loadClass(ClassLoader.java:425)
>         at java.lang.ClassLoader.loadClass(ClassLoader.java:358)
>         ... 26 more
>
>
>
> --
> View this message in context:
> http://apache-spark-user-list.1001560.n3.nabble.com/sparkavro-for-PySpark-1-3-tp25561p25574.html
> Sent from the Apache Spark User List mailing list archive at Nabble.com.
>
> ---------------------------------------------------------------------
> To unsubscribe, e-mail: user-unsubscr...@spark.apache.org
> For additional commands, e-mail: user-h...@spark.apache.org
>
>


-- 
Best Regards,
Ayan Guha

Reply via email to