I have pyspark app loading a large-ish (100GB) dataframe from JSON files and it 
turns out there are a number of duplicate JSON objects in the source data. I am 
trying to find the best way to remove these duplicates before using the 
dataframe.

With both df.dropDuplicates() and df.sqlContext.sql(‘’’SELECT DISTINCT *…’’’) 
the application is not able to complete a shuffle stage due to lost executors. 
Is there a more efficient way to remove these duplicate rows? If not, what 
settings can I tweak to help this succeed? I have tried both increasing and 
decreasing the number of default shuffle partitions (to 100 and 500, 
respectively) but neither changes the behavior.
---------------------------------------------------------------------
To unsubscribe, e-mail: user-unsubscr...@spark.apache.org
For additional commands, e-mail: user-h...@spark.apache.org

Reply via email to