I'm using Spark 1.6.0. I tried removing Kryo and reverting back to Java Serialisation, and get a different error which maybe points in the right direction...
java.lang.AssertionError: assertion failed: No plan for BroadcastHint +- InMemoryRelation [tradeId#30,tradeVersion#31,agreement#49,counterParty#38], true, 10000, StorageLevel(true, true, false, true, 1), Union, Some(ingest_all_union_trades) at scala.Predef$.assert(Predef.scala:179) at org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:59) at org.apache.spark.sql.catalyst.planning.QueryPlanner.planLater(QueryPlanner.scala:54) at org.apache.spark.sql.execution.SparkStrategies$BasicOperators$.apply(SparkStrategies.scala:336) at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:58) at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:58) at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371) at org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:59) at org.apache.spark.sql.catalyst.planning.QueryPlanner.planLater(QueryPlanner.scala:54) at org.apache.spark.sql.execution.SparkStrategies$EquiJoinSelection$.apply(SparkStrategies.scala:105) at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:58) at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:58) at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371) at org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:59) at org.apache.spark.sql.catalyst.planning.QueryPlanner.planLater(QueryPlanner.scala:54) at org.apache.spark.sql.execution.SparkStrategies$BasicOperators$.apply(SparkStrategies.scala:336) at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:58) at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:58) at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371) at org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:59) at org.apache.spark.sql.catalyst.planning.QueryPlanner.planLater(QueryPlanner.scala:54) at org.apache.spark.sql.execution.SparkStrategies$Aggregation$.apply(SparkStrategies.scala:217) at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:58) at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:58) at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371) at org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:59) at org.apache.spark.sql.execution.QueryExecution.sparkPlan$lzycompute(QueryExecution.scala:47) at org.apache.spark.sql.execution.QueryExecution.sparkPlan(QueryExecution.scala:45) at org.apache.spark.sql.execution.QueryExecution.executedPlan$lzycompute(QueryExecution.scala:52) at org.apache.spark.sql.execution.QueryExecution.executedPlan(QueryExecution.scala:52) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:53) at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation.run(InsertIntoHadoopFsRelation.scala:108) at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult$lzycompute(commands.scala:58) at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult(commands.scala:56) at org.apache.spark.sql.execution.ExecutedCommand.doExecute(commands.scala:70) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:127) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:125) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150) at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:125) at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:55) at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:55) at org.apache.spark.sql.execution.datasources.ResolvedDataSource$.apply(ResolvedDataSource.scala:242) at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:148) at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:139) at com.hsbc.rsl.spark.streaming.receiver.functions.PersistLevel3WithDataframes.preAggregateL4(PersistLevel3WithDataframes.java:133) at com.hsbc.rsl.spark.streaming.receiver.functions.PersistLevel3WithDataframes.call(PersistLevel3WithDataframes.java:93) at com.hsbc.rsl.spark.streaming.receiver.functions.PersistLevel3WithDataframes.call(PersistLevel3WithDataframes.java:27) at org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$foreachRDD$3.apply(JavaDStreamLike.scala:335) at org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$foreachRDD$3.apply(JavaDStreamLike.scala:335) at org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$1$$anonfun$apply$mcV$sp$3.apply(DStream.scala:656) at org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$1$$anonfun$apply$mcV$sp$3.apply(DStream.scala:656) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ForEachDStream.scala:50) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:50) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:50) at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:424) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply$mcV$sp(ForEachDStream.scala:49) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:49) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:49) at scala.util.Try$.apply(Try.scala:161) at org.apache.spark.streaming.scheduler.Job.run(Job.scala:39) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply$mcV$sp(JobScheduler.scala:224) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:224) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:224) at scala.util.DynamicVariable.withValue(DynamicVariable.scala:57) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:223) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) 2016-01-21 15:28:32 ERROR RslApp:60 - ERROR executing the application java.lang.AssertionError: assertion failed: No plan for BroadcastHint +- InMemoryRelation [tradeId#30,tradeVersion#31,agreement#49,counterParty#38], true, 10000, StorageLevel(true, true, false, true, 1), Union, Some(ingest_all_union_trades) at scala.Predef$.assert(Predef.scala:179) at org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:59) at org.apache.spark.sql.catalyst.planning.QueryPlanner.planLater(QueryPlanner.scala:54) at org.apache.spark.sql.execution.SparkStrategies$BasicOperators$.apply(SparkStrategies.scala:336) at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:58) at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:58) at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371) at org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:59) at org.apache.spark.sql.catalyst.planning.QueryPlanner.planLater(QueryPlanner.scala:54) at org.apache.spark.sql.execution.SparkStrategies$EquiJoinSelection$.apply(SparkStrategies.scala:105) at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:58) at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:58) at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371) at org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:59) at org.apache.spark.sql.catalyst.planning.QueryPlanner.planLater(QueryPlanner.scala:54) at org.apache.spark.sql.execution.SparkStrategies$BasicOperators$.apply(SparkStrategies.scala:336) at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:58) at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:58) at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371) at org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:59) at org.apache.spark.sql.catalyst.planning.QueryPlanner.planLater(QueryPlanner.scala:54) at org.apache.spark.sql.execution.SparkStrategies$Aggregation$.apply(SparkStrategies.scala:217) at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:58) at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:58) at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371) at org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:59) at org.apache.spark.sql.execution.QueryExecution.sparkPlan$lzycompute(QueryExecution.scala:47) at org.apache.spark.sql.execution.QueryExecution.sparkPlan(QueryExecution.scala:45) at org.apache.spark.sql.execution.QueryExecution.executedPlan$lzycompute(QueryExecution.scala:52) at org.apache.spark.sql.execution.QueryExecution.executedPlan(QueryExecution.scala:52) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:53) at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation.run(InsertIntoHadoopFsRelation.scala:108) at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult$lzycompute(commands.scala:58) at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult(commands.scala:56) at org.apache.spark.sql.execution.ExecutedCommand.doExecute(commands.scala:70) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:127) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:125) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150) at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:125) at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:55) at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:55) at org.apache.spark.sql.execution.datasources.ResolvedDataSource$.apply(ResolvedDataSource.scala:242) at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:148) at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:139) at com.hsbc.rsl.spark.streaming.receiver.functions.PersistLevel3WithDataframes.preAggregateL4(PersistLevel3WithDataframes.java:133) at com.hsbc.rsl.spark.streaming.receiver.functions.PersistLevel3WithDataframes.call(PersistLevel3WithDataframes.java:93) at com.hsbc.rsl.spark.streaming.receiver.functions.PersistLevel3WithDataframes.call(PersistLevel3WithDataframes.java:27) at org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$foreachRDD$3.apply(JavaDStreamLike.scala:335) at org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$foreachRDD$3.apply(JavaDStreamLike.scala:335) at org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$1$$anonfun$apply$mcV$sp$3.apply(DStream.scala:656) at org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$1$$anonfun$apply$mcV$sp$3.apply(DStream.scala:656) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ForEachDStream.scala:50) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:50) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:50) at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:424) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply$mcV$sp(ForEachDStream.scala:49) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:49) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:49) at scala.util.Try$.apply(Try.scala:161) at org.apache.spark.streaming.scheduler.Job.run(Job.scala:39) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply$mcV$sp(JobScheduler.scala:224) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:224) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:224) at scala.util.DynamicVariable.withValue(DynamicVariable.scala:57) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:223) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) On Thu, Jan 21, 2016 at 3:17 PM, Ted Yu <yuzhih...@gmail.com> wrote: > You were using Kryo serialization ? > > If you switch to Java serialization, your job should run fine. > > Which Spark release are you using ? > > Thanks > > On Thu, Jan 21, 2016 at 6:59 AM, sebastian.piu <sebastian....@gmail.com> > wrote: > >> Hi all, >> >> I'm trying to work out a problem when using Spark Streaming, currently I >> have the following piece of code inside a foreachRDD call: >> >> Dataframe results = ... //some dataframe created from the incoming rdd - >> moderately big, I don't want this to be shuffled >> DataFrame t = sqlContext.table("a_temp_cached_table"); //a very small >> table >> - that might mutate over time >> DataFrame x = results.join(*broadcast(t)*, JOIN_COLUMNS_SEQ) >> .groupBy("column1").count() >> .write() >> .mode(SaveMode.Append) >> .save("/some-path/"); >> >> The intention of the code above is to distribute the "t" dataframe if >> required, but avoid shuffling the "results". >> >> This works fine when ran on scala-shell / spark-submit, but when ran from >> within my executors I get the exception below... >> >> Any thoughts? If I remove the *broadcast(t)* then it works fine but where >> my >> big table is shuffled around. >> >> 2016-01-21 14:47:00 ERROR JobScheduler:95 - Error running job streaming >> job >> 1453387560000 ms.0 >> java.lang.ArrayIndexOutOfBoundsException: 8388607 >> at >> >> com.esotericsoftware.kryo.util.IdentityObjectIntMap.clear(IdentityObjectIntMap.java:345) >> at >> >> com.esotericsoftware.kryo.util.MapReferenceResolver.reset(MapReferenceResolver.java:47) >> at com.esotericsoftware.kryo.Kryo.reset(Kryo.java:804) >> at >> com.esotericsoftware.kryo.Kryo.writeClassAndObject(Kryo.java:570) >> at >> >> org.apache.spark.serializer.KryoSerializationStream.writeObject(KryoSerializer.scala:194) >> at >> >> org.apache.spark.broadcast.TorrentBroadcast$.blockifyObject(TorrentBroadcast.scala:203) >> at >> >> org.apache.spark.broadcast.TorrentBroadcast.writeBlocks(TorrentBroadcast.scala:102) >> at >> >> org.apache.spark.broadcast.TorrentBroadcast.<init>(TorrentBroadcast.scala:85) >> at >> >> org.apache.spark.broadcast.TorrentBroadcastFactory.newBroadcast(TorrentBroadcastFactory.scala:34) >> at >> >> org.apache.spark.broadcast.BroadcastManager.newBroadcast(BroadcastManager.scala:63) >> at >> org.apache.spark.SparkContext.broadcast(SparkContext.scala:1326) >> at >> >> org.apache.spark.sql.execution.joins.BroadcastHashJoin$$anonfun$broadcastFuture$1$$anonfun$apply$1.apply(BroadcastHashJoin.scala:91) >> at >> >> org.apache.spark.sql.execution.joins.BroadcastHashJoin$$anonfun$broadcastFuture$1$$anonfun$apply$1.apply(BroadcastHashJoin.scala:79) >> at >> >> org.apache.spark.sql.execution.SQLExecution$.withExecutionId(SQLExecution.scala:100) >> at >> >> org.apache.spark.sql.execution.joins.BroadcastHashJoin$$anonfun$broadcastFuture$1.apply(BroadcastHashJoin.scala:79) >> at >> >> org.apache.spark.sql.execution.joins.BroadcastHashJoin$$anonfun$broadcastFuture$1.apply(BroadcastHashJoin.scala:79) >> at >> >> scala.concurrent.impl.Future$PromiseCompletingRunnable.liftedTree1$1(Future.scala:24) >> at >> >> scala.concurrent.impl.Future$PromiseCompletingRunnable.run(Future.scala:24) >> at >> >> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) >> at >> >> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) >> at java.lang.Thread.run(Thread.java:745) >> 2016-01-21 14:47:00 ERROR RslApp:60 - ERROR executing the application >> java.lang.ArrayIndexOutOfBoundsException: 8388607 >> at >> >> com.esotericsoftware.kryo.util.IdentityObjectIntMap.clear(IdentityObjectIntMap.java:345) >> at >> >> com.esotericsoftware.kryo.util.MapReferenceResolver.reset(MapReferenceResolver.java:47) >> at com.esotericsoftware.kryo.Kryo.reset(Kryo.java:804) >> at >> com.esotericsoftware.kryo.Kryo.writeClassAndObject(Kryo.java:570) >> at >> >> org.apache.spark.serializer.KryoSerializationStream.writeObject(KryoSerializer.scala:194) >> at >> >> org.apache.spark.broadcast.TorrentBroadcast$.blockifyObject(TorrentBroadcast.scala:203) >> at >> >> org.apache.spark.broadcast.TorrentBroadcast.writeBlocks(TorrentBroadcast.scala:102) >> at >> >> org.apache.spark.broadcast.TorrentBroadcast.<init>(TorrentBroadcast.scala:85) >> at >> >> org.apache.spark.broadcast.TorrentBroadcastFactory.newBroadcast(TorrentBroadcastFactory.scala:34) >> at >> >> org.apache.spark.broadcast.BroadcastManager.newBroadcast(BroadcastManager.scala:63) >> at >> org.apache.spark.SparkContext.broadcast(SparkContext.scala:1326) >> at >> >> org.apache.spark.sql.execution.joins.BroadcastHashJoin$$anonfun$broadcastFuture$1$$anonfun$apply$1.apply(BroadcastHashJoin.scala:91) >> at >> >> org.apache.spark.sql.execution.joins.BroadcastHashJoin$$anonfun$broadcastFuture$1$$anonfun$apply$1.apply(BroadcastHashJoin.scala:79) >> at >> >> org.apache.spark.sql.execution.SQLExecution$.withExecutionId(SQLExecution.scala:100) >> at >> >> org.apache.spark.sql.execution.joins.BroadcastHashJoin$$anonfun$broadcastFuture$1.apply(BroadcastHashJoin.scala:79) >> at >> >> org.apache.spark.sql.execution.joins.BroadcastHashJoin$$anonfun$broadcastFuture$1.apply(BroadcastHashJoin.scala:79) >> at >> >> scala.concurrent.impl.Future$PromiseCompletingRunnable.liftedTree1$1(Future.scala:24) >> at >> >> scala.concurrent.impl.Future$PromiseCompletingRunnable.run(Future.scala:24) >> at >> >> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) >> at >> >> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) >> at java.lang.Thread.run(Thread.java:745) >> [Stage 10:> (0 + >> 24) / >> 24]2016-01-21 14:47:02 ERROR InsertIntoHadoopFsRelation:95 - Aborting job. >> java.lang.InterruptedException >> at java.lang.Object.wait(Native Method) >> at java.lang.Object.wait(Object.java:502) >> at >> org.apache.spark.scheduler.JobWaiter.awaitResult(JobWaiter.scala:73) >> at >> org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:612) >> at org.apache.spark.SparkContext.runJob(SparkContext.scala:1832) >> at org.apache.spark.SparkContext.runJob(SparkContext.scala:1845) >> at org.apache.spark.SparkContext.runJob(SparkContext.scala:1922) >> at >> >> org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply$mcV$sp(InsertIntoHadoopFsRelation.scala:150) >> at >> >> org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply(InsertIntoHadoopFsRelation.scala:108) >> at >> >> org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply(InsertIntoHadoopFsRelation.scala:108) >> at >> >> org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56) >> at >> >> org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation.run(InsertIntoHadoopFsRelation.scala:108) >> at >> >> org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult$lzycompute(commands.scala:58) >> at >> >> org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult(commands.scala:56) >> at >> >> org.apache.spark.sql.execution.ExecutedCommand.doExecute(commands.scala:70) >> at >> >> org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:127) >> at >> >> org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:125) >> at >> >> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150) >> at >> org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:125) >> at >> >> org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:55) >> at >> >> org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:55) >> at >> >> org.apache.spark.sql.execution.datasources.ResolvedDataSource$.apply(ResolvedDataSource.scala:242) >> at >> org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:148) >> at >> org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:139) >> at >> >> com.hsbc.rsl.spark.streaming.receiver.functions.PersistLevel3WithDataframes.call(PersistLevel3WithDataframes.java:84) >> at >> >> com.hsbc.rsl.spark.streaming.receiver.functions.PersistLevel3WithDataframes.call(PersistLevel3WithDataframes.java:27) >> at >> >> org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$foreachRDD$3.apply(JavaDStreamLike.scala:335) >> at >> >> org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$foreachRDD$3.apply(JavaDStreamLike.scala:335) >> at >> >> org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$1$$anonfun$apply$mcV$sp$3.apply(DStream.scala:656) >> at >> >> org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$1$$anonfun$apply$mcV$sp$3.apply(DStream.scala:656) >> at >> >> org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ForEachDStream.scala:50) >> at >> >> org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:50) >> at >> >> org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:50) >> at >> >> org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:424) >> at >> >> org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply$mcV$sp(ForEachDStream.scala:49) >> at >> >> org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:49) >> at >> >> org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:49) >> at scala.util.Try$.apply(Try.scala:161) >> at org.apache.spark.streaming.scheduler.Job.run(Job.scala:39) >> at >> >> org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply$mcV$sp(JobScheduler.scala:224) >> at >> >> org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:224) >> at >> >> org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:224) >> at scala.util.DynamicVariable.withValue(DynamicVariable.scala:57) >> at >> >> org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:223) >> at >> >> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) >> at >> >> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) >> at java.lang.Thread.run(Thread.java:745) >> 2016-01-21 14:47:02 ERROR DefaultWriterContainer:74 - Job >> job_201601211447_0000 aborted. >> >> >> >> >> >> >> >> >> -- >> View this message in context: >> http://apache-spark-user-list.1001560.n3.nabble.com/java-lang-ArrayIndexOutOfBoundsException-when-attempting-broadcastjoin-tp26034.html >> Sent from the Apache Spark User List mailing list archive at Nabble.com. >> >> --------------------------------------------------------------------- >> To unsubscribe, e-mail: user-unsubscr...@spark.apache.org >> For additional commands, e-mail: user-h...@spark.apache.org >> >> >