Hey, We had the same with Spark 1.5.x and disappeared after we upgraded to 1.6.
Tamas On Saturday, 5 March 2016, SLiZn Liu <sliznmail...@gmail.com> wrote: > Hi Spark Mailing List, > > I’m running terabytes of text files with Spark on Mesos, the job runs fine > until we decided to switch to Mesos fine-grained mode. > > At first glance, we spotted massive number of task lost errors in logs: > > 16/03/05 04:01:20 ERROR TaskSchedulerImpl: Ignoring update with state LOST > for TID 14420 because its task set is gone (this is likely the result of > receiving duplicate task finished status updates) > 16/03/05 04:01:20 WARN TaskSetManager: Lost task 122.0 in stage 10.0 (TID > 13901, ourhost.com): java.io.FileNotFoundException: > /home/mesos/mesos-slave/slaves/20160222-161607-2315648778-5050-44877-S0/frameworks/20160222-183113-2332425994-5050-54405-0145/executors/20160222-161607-2315648778-5050-44877-S0/runs/62137cc2-317e-4500-982b-0007106aec40/blockmgr-16b8353c-ac6c-4019-b8e7-a16659cf6fe2/33/shuffle_2_122_0.index.8a14cde6-2877-4634-b4c2-fc9384f2ce8d > (No such file or directory) > at java.io.FileOutputStream.open0(Native Method) > at java.io.FileOutputStream.open(FileOutputStream.java:270) > at java.io.FileOutputStream.<init>(FileOutputStream.java:213) > at java.io.FileOutputStream.<init>(FileOutputStream.java:162) > at > org.apache.spark.shuffle.IndexShuffleBlockResolver.writeIndexFileAndCommit(IndexShuffleBlockResolver.scala:141) > at > org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:161) > at > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73) > at > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) > at org.apache.spark.scheduler.Task.run(Task.scala:89) > at > org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) > at java.lang.Thread.run(Thread.java:745) > > I don’t know if the first line of task scheduler error is related, I asked > in this mailing list before but had no luck to find the cause. > > As I dig further, I found the following OOM exception, > > 16/03/05 04:01:20 ERROR SparkUncaughtExceptionHandler: Uncaught exception in > thread Thread[Executor task launch worker-83,5,main] > java.lang.OutOfMemoryError: Unable to acquire 262144 bytes of memory, got > 160165 > at > org.apache.spark.memory.MemoryConsumer.allocateArray(MemoryConsumer.java:91) > at > org.apache.spark.unsafe.map.BytesToBytesMap.allocate(BytesToBytesMap.java:735) > at > org.apache.spark.unsafe.map.BytesToBytesMap.<init>(BytesToBytesMap.java:197) > at > org.apache.spark.unsafe.map.BytesToBytesMap.<init>(BytesToBytesMap.java:212) > at > org.apache.spark.sql.execution.UnsafeFixedWidthAggregationMap.<init>(UnsafeFixedWidthAggregationMap.java:103) > at > org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator.<init>(TungstenAggregationIterator.scala:483) > at > org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:95) > at > org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:86) > at > org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710) > at > org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) > at > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73) > at > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) > at org.apache.spark.scheduler.Task.run(Task.scala:89) > at > org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) > at java.lang.Thread.run(Thread.java:745) > > Anyone knows if this is a bug, or some configuration is wrong? > ------------------------------ > > BR, > Todd Leo > >