hi

I am using spark with yarn .  how can i  make sure that the ulimit settings
are applied to the Spark process ?

I set core dump limit to unlimited in all nodes .
   Edit  /etc/security/limits.conf file and add  " * soft core unlimited "
line.

i rechecked  using :  $ ulimit -all

core file size          (blocks, -c) unlimited
data seg size           (kbytes, -d) unlimited
scheduling priority             (-e) 0
file size               (blocks, -f) unlimited
pending signals                 (-i) 241204
max locked memory       (kbytes, -l) 64
max memory size         (kbytes, -m) unlimited
open files                      (-n) 1024
pipe size            (512 bytes, -p) 8
POSIX message queues     (bytes, -q) 819200
real-time priority              (-r) 0
stack size              (kbytes, -s) 8192
cpu time               (seconds, -t) unlimited
max user processes              (-u) 241204
virtual memory          (kbytes, -v) unlimited
file locks                      (-x) unlimited

Regards
Prateek


On Thu, Jun 16, 2016 at 4:46 AM, Jacek Laskowski <ja...@japila.pl> wrote:

> Hi,
>
> Can you make sure that the ulimit settings are applied to the Spark
> process? Is this Spark on YARN or Standalone?
>
> Pozdrawiam,
> Jacek Laskowski
> ----
> https://medium.com/@jaceklaskowski/
> Mastering Apache Spark http://bit.ly/mastering-apache-spark
> Follow me at https://twitter.com/jaceklaskowski
>
>
> On Wed, Jun 1, 2016 at 7:55 PM, prateek arora
> <prateek.arora...@gmail.com> wrote:
> > Hi
> >
> > I am using cloudera to  setup spark 1.6.0  on ubuntu 14.04 .
> >
> > I set core dump limit to unlimited in all nodes .
> >    Edit  /etc/security/limits.conf file and add  " * soft core unlimited
> "
> > line.
> >
> > i rechecked  using :  $ ulimit -all
> >
> > core file size          (blocks, -c) unlimited
> > data seg size           (kbytes, -d) unlimited
> > scheduling priority             (-e) 0
> > file size               (blocks, -f) unlimited
> > pending signals                 (-i) 241204
> > max locked memory       (kbytes, -l) 64
> > max memory size         (kbytes, -m) unlimited
> > open files                      (-n) 1024
> > pipe size            (512 bytes, -p) 8
> > POSIX message queues     (bytes, -q) 819200
> > real-time priority              (-r) 0
> > stack size              (kbytes, -s) 8192
> > cpu time               (seconds, -t) unlimited
> > max user processes              (-u) 241204
> > virtual memory          (kbytes, -v) unlimited
> > file locks                      (-x) unlimited
> >
> > but when I am running my spark application with some third party native
> > libraries . but it crashes some time and show error " Failed to write
> core
> > dump. Core dumps have been disabled. To enable core dumping, try "ulimit
> -c
> > unlimited" before starting Java again " .
> >
> > Below are the log :
> >
> >  A fatal error has been detected by the Java Runtime Environment:
> > #
> > #  SIGSEGV (0xb) at pc=0x00007fd44b491fb9, pid=20458, tid=140549318547200
> > #
> > # JRE version: Java(TM) SE Runtime Environment (7.0_67-b01) (build
> > 1.7.0_67-b01)
> > # Java VM: Java HotSpot(TM) 64-Bit Server VM (24.65-b04 mixed mode
> > linux-amd64 compressed oops)
> > # Problematic frame:
> > # V  [libjvm.so+0x650fb9]  jni_SetByteArrayRegion+0xa9
> > #
> > # Failed to write core dump. Core dumps have been disabled. To enable
> core
> > dumping, try "ulimit -c unlimited" before starting Java again
> > #
> > # An error report file with more information is saved as:
> > #
> >
> /yarn/nm/usercache/master/appcache/application_1462930975871_0004/container_1462930975871_0004_01_000066/hs_err_pid20458.log
> > #
> > # If you would like to submit a bug report, please visit:
> > #   http://bugreport.sun.com/bugreport/crash.jsp
> > #
> >
> >
> > so how can i enable core dump and save it some place ?
> >
> > Regards
> > Prateek
> >
> >
> >
> > --
> > View this message in context:
> http://apache-spark-user-list.1001560.n3.nabble.com/How-to-enable-core-dump-in-spark-tp27065.html
> > Sent from the Apache Spark User List mailing list archive at Nabble.com.
> >
> > ---------------------------------------------------------------------
> > To unsubscribe, e-mail: user-unsubscr...@spark.apache.org
> > For additional commands, e-mail: user-h...@spark.apache.org
> >
>

Reply via email to