Well I've tried with 1.5.2, 1.6.2 and 2.0.1 FYI, I have created https://issues.apache.org/jira/browse/SPARK-18388
On Wed, Nov 9, 2016 at 3:08 PM, Michael Armbrust <mich...@databricks.com> wrote: > Which version of Spark? Does seem like a bug. > > On Wed, Nov 9, 2016 at 10:06 AM, Raviteja Lokineni < > raviteja.lokin...@gmail.com> wrote: > >> Does this stacktrace look like a bug guys? Definitely seems like one to >> me. >> >> Caused by: java.lang.StackOverflowError >> at org.apache.spark.sql.execution.SparkPlan.prepare(SparkPlan.scala:195) >> at >> org.apache.spark.sql.execution.SparkPlan$$anonfun$prepare$1.apply(SparkPlan.scala:195) >> at >> org.apache.spark.sql.execution.SparkPlan$$anonfun$prepare$1.apply(SparkPlan.scala:195) >> at scala.collection.immutable.List.foreach(List.scala:381) >> at org.apache.spark.sql.execution.SparkPlan.prepare(SparkPlan.scala:195) >> at >> org.apache.spark.sql.execution.SparkPlan$$anonfun$prepare$1.apply(SparkPlan.scala:195) >> at >> org.apache.spark.sql.execution.SparkPlan$$anonfun$prepare$1.apply(SparkPlan.scala:195) >> at scala.collection.immutable.List.foreach(List.scala:381) >> at org.apache.spark.sql.execution.SparkPlan.prepare(SparkPlan.scala:195) >> at >> org.apache.spark.sql.execution.SparkPlan$$anonfun$prepare$1.apply(SparkPlan.scala:195) >> at >> org.apache.spark.sql.execution.SparkPlan$$anonfun$prepare$1.apply(SparkPlan.scala:195) >> at scala.collection.immutable.List.foreach(List.scala:381) >> at org.apache.spark.sql.execution.SparkPlan.prepare(SparkPlan.scala:195) >> at >> org.apache.spark.sql.execution.SparkPlan$$anonfun$prepare$1.apply(SparkPlan.scala:195) >> at >> org.apache.spark.sql.execution.SparkPlan$$anonfun$prepare$1.apply(SparkPlan.scala:195) >> at scala.collection.immutable.List.foreach(List.scala:381) >> >> >> On Wed, Nov 9, 2016 at 10:48 AM, Raviteja Lokineni < >> raviteja.lokin...@gmail.com> wrote: >> >>> Hi all, >>> >>> I am not sure if this is a bug or not. Basically I am generating weekly >>> aggregates of every column of data. >>> >>> Adding source code here (also attached): >>> >>> from pyspark.sql.window import Window >>> from pyspark.sql.functions import * >>> >>> timeSeries = sqlContext.read.option("header", >>> "true").format("org.apache.spark.sql.execution.datasources.csv.CSVFileFormat").load("file:///tmp/spark-bug.csv") >>> >>> # Hive timestamp is interpreted as UNIX timestamp in seconds* >>> days = lambda i: i * 86400 >>> >>> w = (Window() >>> .partitionBy("id") >>> .orderBy(col("dt").cast("timestamp").cast("long")) >>> .rangeBetween(-days(6), 0)) >>> >>> cols = ["id", "dt"] >>> skipCols = ["id", "dt"] >>> >>> for col in timeSeries.columns: >>> if col in skipCols: >>> continue >>> cols.append(mean(col).over(w).alias("mean_7_"+col)) >>> cols.append(count(col).over(w).alias("count_7_"+col)) >>> cols.append(sum(col).over(w).alias("sum_7_"+col)) >>> cols.append(min(col).over(w).alias("min_7_"+col)) >>> cols.append(max(col).over(w).alias("max_7_"+col)) >>> >>> df = timeSeries.select(cols) >>> df.orderBy('id', 'dt').write\ >>> .format("org.apache.spark.sql.execution.datasources.csv.CSVFileFormat")\ >>> .save("file:///tmp/spark-bug-out.csv") >>> >>> >>> Thanks, >>> -- >>> *Raviteja Lokineni* | Business Intelligence Developer >>> TD Ameritrade >>> >>> E: raviteja.lokin...@gmail.com >>> >>> [image: View Raviteja Lokineni's profile on LinkedIn] >>> <http://in.linkedin.com/in/ravitejalokineni> >>> >>> >> >> >> -- >> *Raviteja Lokineni* | Business Intelligence Developer >> TD Ameritrade >> >> E: raviteja.lokin...@gmail.com >> >> [image: View Raviteja Lokineni's profile on LinkedIn] >> <http://in.linkedin.com/in/ravitejalokineni> >> >> > -- *Raviteja Lokineni* | Business Intelligence Developer TD Ameritrade E: raviteja.lokin...@gmail.com [image: View Raviteja Lokineni's profile on LinkedIn] <http://in.linkedin.com/in/ravitejalokineni>