Hallo, I am not sure what you mean by min/max for strings. I do not know if this makes sense. What the ORC format has is bloom filters for strings etc. - are you referring to this?
In order to apply min/max filters Spark needs to read the meta data of the file. If the filter is applied or not - this you can see from the number of bytes read. Best regards > On 17 Jan 2017, at 15:28, djiang <dji...@dataxu.com> wrote: > > Hi, > > I have been looking into how Spark stores statistics (min/max) in Parquet as > well as how it uses the info for query optimization. > I have got a few questions. > First setup: Spark 2.1.0, the following sets up a Dataframe of 1000 rows, > with a long type and a string type column. > They are sorted by different columns, though. > > scala> spark.sql("select id, cast(id as string) text from > range(1000)").sort("id").write.parquet("/secret/spark21-sortById") > scala> spark.sql("select id, cast(id as string) text from > range(1000)").sort("Text").write.parquet("/secret/spark21-sortByText") > > I added some code to parquet-tools to print out stats and examine the > generated parquet files: > > hadoop jar parquet-tools-1.9.1-SNAPSHOT.jar meta > /secret/spark21-sortById/part-00000-39f7ac12-6038-46ee-b5c3-d7a5a06e4425.snappy.parquet > > file: > file:/secret/spark21-sortById/part-00000-39f7ac12-6038-46ee-b5c3-d7a5a06e4425.snappy.parquet > > creator: parquet-mr version 1.8.1 (build > 4aba4dae7bb0d4edbcf7923ae1339f28fd3f7fcf) > extra: org.apache.spark.sql.parquet.row.metadata = > {"type":"struct","fields":[{"name":"id","type":"long","nullable":false,"metadata":{}},{"name":"text","type":"string","nullable":false,"metadata":{}}]} > > > file schema: spark_schema > -------------------------------------------------------------------------------- > id: REQUIRED INT64 R:0 D:0 > text: REQUIRED BINARY O:UTF8 R:0 D:0 > > row group 1: RC:5 TS:133 OFFSET:4 > -------------------------------------------------------------------------------- > id: INT64 SNAPPY DO:0 FPO:4 SZ:71/81/1.14 VC:5 > ENC:PLAIN,BIT_PACKED STA:[min: 0, max: 4, num_nulls: 0] > text: BINARY SNAPPY DO:0 FPO:75 SZ:53/52/0.98 VC:5 > ENC:PLAIN,BIT_PACKED > > hadoop jar parquet-tools-1.9.1-SNAPSHOT.jar meta > /secret/spark21-sortByText/part-00000-3d7eac74-5ca0-44a0-b8a6-d67cc38a2bde.snappy.parquet > > file: > file:/secret/spark21-sortByText/part-00000-3d7eac74-5ca0-44a0-b8a6-d67cc38a2bde.snappy.parquet > > creator: parquet-mr version 1.8.1 (build > 4aba4dae7bb0d4edbcf7923ae1339f28fd3f7fcf) > extra: org.apache.spark.sql.parquet.row.metadata = > {"type":"struct","fields":[{"name":"id","type":"long","nullable":false,"metadata":{}},{"name":"text","type":"string","nullable":false,"metadata":{}}]} > > > file schema: spark_schema > -------------------------------------------------------------------------------- > id: REQUIRED INT64 R:0 D:0 > text: REQUIRED BINARY O:UTF8 R:0 D:0 > > row group 1: RC:5 TS:140 OFFSET:4 > -------------------------------------------------------------------------------- > id: INT64 SNAPPY DO:0 FPO:4 SZ:71/81/1.14 VC:5 > ENC:PLAIN,BIT_PACKED STA:[min: 0, max: 101, num_nulls: 0] > text: BINARY SNAPPY DO:0 FPO:75 SZ:60/59/0.98 VC:5 > ENC:PLAIN,BIT_PACKED > > So the question is why is Spark, particularly, 2.1.0, only generate min/max > for numeric columns, but not strings(BINARY) fields, even if the string > field is included in the sort? Maybe I missed a configuraiton? > > The second issue, is how can I confirm Spark is utilizing the min/max? > scala> sc.setLogLevel("INFO") > scala> spark.sql("select * from parquet.`/secret/spark21-sortById` where > id=4").show > I got many lines like this: > 17/01/17 09:23:35 INFO FilterCompat: Filtering using predicate: > and(noteq(id, null), eq(id, 4)) > 17/01/17 09:23:35 INFO FileScanRDD: Reading File path: > file:///secret/spark21-sortById/part-00000-39f7ac12-6038-46ee-b5c3-d7a5a06e4425.snappy.parquet, > range: 0-558, partition values: [empty row] > ... > 17/01/17 09:23:35 INFO FilterCompat: Filtering using predicate: > and(noteq(id, null), eq(id, 4)) > 17/01/17 09:23:35 INFO FileScanRDD: Reading File path: > file:///secret/spark21-sortById/part-00193-39f7ac12-6038-46ee-b5c3-d7a5a06e4425.snappy.parquet, > range: 0-574, partition values: [empty row] > ... > > The question is it looks like Spark is scanning every file, even if from the > min/max, Spark should be able to determine only part-00000 has the relevant > data. Or maybe I read it wrong, that Spark is skipping the files? Maybe > Spark can only use partition value for data skipping? > > Thanks, > > Dong > > > > > -- > View this message in context: > http://apache-spark-user-list.1001560.n3.nabble.com/Spark-Parquet-Statistics-question-tp28312.html > Sent from the Apache Spark User List mailing list archive at Nabble.com. > > --------------------------------------------------------------------- > To unsubscribe e-mail: user-unsubscr...@spark.apache.org > --------------------------------------------------------------------- To unsubscribe e-mail: user-unsubscr...@spark.apache.org