Hi, Spark version 2.1.0 MySQL community server version 5.7.17 MySQL Connector Java 5.1.40
I need to save a dataframe to a MySQL table. In spark shell, the following statement succeeds: scala> df.write.mode(SaveMode.Append).format("jdbc").option("url", "jdbc:mysql://127.0.0.1:3306/mydb").option("dbtable", "person").option("user", "username").option("password", "password").save() I write an app that basically does the same thing, issuing the same statement saving the same dataframe to the same MySQL table. I run it using spark-submit, but it fails, reporting some error in the SQL syntax. Here's the detailed stack trace: 17/01/25 16:06:02 INFO DAGScheduler: Job 2 failed: save at DataIngestionJob.scala:119, took 0.159574 s Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 2.0 failed 1 times, most recent failure: Lost task 0.0 in stage 2.0 (TID 3, localhost, executor driver): java.sql.BatchUpdateException: You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near '"user","age","state") VALUES ('user3',44,'CT')' at line 1 at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:423) at com.mysql.jdbc.Util.handleNewInstance(Util.java:425) at com.mysql.jdbc.Util.getInstance(Util.java:408) at com.mysql.jdbc.SQLError.createBatchUpdateException(SQLError.java:1162) at com.mysql.jdbc.PreparedStatement.executeBatchSerially(PreparedStatement.java:1773) at com.mysql.jdbc.PreparedStatement.executeBatchInternal(PreparedStatement.java:1257) at com.mysql.jdbc.StatementImpl.executeBatch(StatementImpl.java:958) at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$.savePartition(JdbcUtils.scala:597) at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$saveTable$1.apply(JdbcUtils.scala:670) at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$saveTable$1.apply(JdbcUtils.scala:670) at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$29.apply(RDD.scala:925) at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$29.apply(RDD.scala:925) at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944) at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) at org.apache.spark.scheduler.Task.run(Task.scala:99) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) Caused by: com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException: You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near '"user","age","state") VALUES ('user3',44,'CT')' at line 1 at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:423) at com.mysql.jdbc.Util.handleNewInstance(Util.java:425) at com.mysql.jdbc.Util.getInstance(Util.java:408) at com.mysql.jdbc.SQLError.createSQLException(SQLError.java:943) at com.mysql.jdbc.MysqlIO.checkErrorPacket(MysqlIO.java:3970) at com.mysql.jdbc.MysqlIO.checkErrorPacket(MysqlIO.java:3906) at com.mysql.jdbc.MysqlIO.sendCommand(MysqlIO.java:2524) at com.mysql.jdbc.MysqlIO.sqlQueryDirect(MysqlIO.java:2677) at com.mysql.jdbc.ConnectionImpl.execSQL(ConnectionImpl.java:2549) at com.mysql.jdbc.PreparedStatement.executeInternal(PreparedStatement.java:1861) at com.mysql.jdbc.PreparedStatement.executeUpdateInternal(PreparedStatement.java:2073) at com.mysql.jdbc.PreparedStatement.executeBatchSerially(PreparedStatement.java:1751) ... 15 more Driver stacktrace: at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1435) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1423) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1422) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1422) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802) at scala.Option.foreach(Option.scala:257) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:802) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1650) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1605) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1594) at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1918) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1931) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1944) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1958) at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1.apply(RDD.scala:925) at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1.apply(RDD.scala:923) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:362) at org.apache.spark.rdd.RDD.foreachPartition(RDD.scala:923) at org.apache.spark.sql.Dataset$$anonfun$foreachPartition$1.apply$mcV$sp(Dataset.scala:2305) at org.apache.spark.sql.Dataset$$anonfun$foreachPartition$1.apply(Dataset.scala:2305) at org.apache.spark.sql.Dataset$$anonfun$foreachPartition$1.apply(Dataset.scala:2305) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:57) at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:2765) at org.apache.spark.sql.Dataset.foreachPartition(Dataset.scala:2304) at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$.saveTable(JdbcUtils.scala:670) at org.apache.spark.sql.execution.datasources.jdbc.JdbcRelationProvider.createRelation(JdbcRelationProvider.scala:77) at org.apache.spark.sql.execution.datasources.DataSource.write(DataSource.scala:426) at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:215) at io.optics.analytics.dataingestion.DataIngestion.run(DataIngestionJob.scala:119) at io.optics.analytics.dataingestion.DataIngestionJob$.main(DataIngestionJob.scala:28) at io.optics.analytics.dataingestion.DataIngestionJob.main(DataIngestionJob.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:738) at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:187) at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:212) at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:126) at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) Any idea why it's happening? A possible bug in spark? Thanks, Dzung. --------------------------------------------------------------------- To unsubscribe e-mail: user-unsubscr...@spark.apache.org