And to be clear, are you doing a self-join for approx similarity? Or
joining to another dataset?



On Thu, 23 Feb 2017 at 02:01, nguyen duc Tuan <newvalu...@gmail.com> wrote:

> Hi Seth,
> Here's the parameters that I used in my experiments.
> - Number of executors: 16
> - Executor's memories: vary from 1G -> 2G -> 3G
> - Number of cores per executor: 1-> 2
> - Driver's memory:  1G -> 2G -> 3G
> - The similar threshold: 0.6
> MinHash:
> - number of hash tables: 2
> SignedRandomProjection:
> - Number of hash tables: 2
>
> 2017-02-23 0:13 GMT+07:00 Seth Hendrickson <seth.hendrickso...@gmail.com>:
>
> I'm looking into this a bit further, thanks for bringing it up! Right now
> the LSH implementation only uses OR-amplification. The practical
> consequence of this is that it will select too many candidates when doing
> approximate near neighbor search and approximate similarity join. When we
> add AND-amplification I think it will become significantly more usable. In
> the meantime, I will also investigate scalability issues.
>
> Can you please provide every parameter you used? It will be very helfpul
> :) For instance, the similarity threshold, the number of hash tables, the
> bucket width, etc...
>
> Thanks!
>
> On Mon, Feb 13, 2017 at 3:21 PM, Nick Pentreath <nick.pentre...@gmail.com>
> wrote:
>
> The original Uber authors provided this performance test result:
> https://docs.google.com/document/d/19BXg-67U83NVB3M0I84HVBVg3baAVaESD_mrg_-vLro
>
> This was for MinHash only though, so it's not clear about what the
> scalability is for the other metric types.
>
> The SignRandomProjectionLSH is not yet in Spark master (see
> https://issues.apache.org/jira/browse/SPARK-18082). It could be there are
> some implementation details that would make a difference here.
>
> By the way, what is the join threshold you use in approx join?
>
> Could you perhaps create a JIRA ticket with the details in order to track
> this?
>
>
> On Sun, 12 Feb 2017 at 22:52 nguyen duc Tuan <newvalu...@gmail.com> wrote:
>
> After all, I switched back to LSH implementation that I used before (
> https://github.com/karlhigley/spark-neighbors ). I can run on my dataset
> now. If someone has any suggestion, please tell me.
> Thanks.
>
> 2017-02-12 9:25 GMT+07:00 nguyen duc Tuan <newvalu...@gmail.com>:
>
> Hi Timur,
> 1) Our data is transformed to dataset of Vector already.
> 2) If I use RandomSignProjectLSH, the job dies after I call
> approximateSimilarJoin. I tried to use Minhash instead, the job is still
> slow. I don't thinks the problem is related to the GC. The time for GC is
> small compare with the time for computation. Here is some screenshots of my
> job.
> Thanks
>
> 2017-02-12 8:01 GMT+07:00 Timur Shenkao <t...@timshenkao.su>:
>
> Hello,
>
> 1) Are you sure that your data is "clean"?  No unexpected missing values?
> No strings in unusual encoding? No additional or missing columns ?
> 2) How long does your job run? What about garbage collector parameters?
> Have you checked what happens with jconsole / jvisualvm ?
>
> Sincerely yours, Timur
>
> On Sat, Feb 11, 2017 at 12:52 AM, nguyen duc Tuan <newvalu...@gmail.com>
> wrote:
>
> Hi Nick,
> Because we use *RandomSignProjectionLSH*, there is only one parameter for
> LSH is the number of hashes. I try with small number of hashes (2) but the
> error is still happens. And it happens when I call similarity join. After
> transformation, the size of  dataset is about 4G.
>
> 2017-02-11 3:07 GMT+07:00 Nick Pentreath <nick.pentre...@gmail.com>:
>
> What other params are you using for the lsh transformer?
>
> Are the issues occurring during transform or during the similarity join?
>
>
> On Fri, 10 Feb 2017 at 05:46, nguyen duc Tuan <newvalu...@gmail.com>
> wrote:
>
> hi Das,
> In general, I will apply them to larger datasets, so I want to use LSH,
> which is more scaleable than the approaches as you suggested. Have you
> tried LSH in Spark 2.1.0 before ? If yes, how do you set the
> parameters/configuration to make it work ?
> Thanks.
>
> 2017-02-10 19:21 GMT+07:00 Debasish Das <debasish.da...@gmail.com>:
>
> If it is 7m rows and 700k features (or say 1m features) brute force row
> similarity will run fine as well...check out spark-4823...you can compare
> quality with approximate variant...
> On Feb 9, 2017 2:55 AM, "nguyen duc Tuan" <newvalu...@gmail.com> wrote:
>
> Hi everyone,
> Since spark 2.1.0 introduces LSH (
> http://spark.apache.org/docs/latest/ml-features.html#locality-sensitive-hashing),
> we want to use LSH to find approximately nearest neighbors. Basically, We
> have dataset with about 7M rows. we want to use cosine distance to meassure
> the similarity between items, so we use *RandomSignProjectionLSH* (
> https://gist.github.com/tuan3w/c968e56ea8ef135096eeedb08af097db) instead
> of *BucketedRandomProjectionLSH*. I try to tune some configurations such
> as serialization, memory fraction, executor memory (~6G), number of
> executors ( ~20), memory overhead ..., but nothing works. I often get error
> "java.lang.OutOfMemoryError: Java heap space" while running. I know that
> this implementation is done by engineer at Uber but I don't know right
> configurations,.. to run the algorithm at scale. Do they need very big
> memory to run it?
>
> Any help would be appreciated.
> Thanks
>
>
>
>
>
>
>
>
>

Reply via email to