What is the --jars you are submitting? You may have conflicting copies of Spark classes that interfere.
On Wed, Mar 1, 2017, 14:20 Dominik Safaric <dominiksafa...@gmail.com> wrote: > I've been trying to submit a Spark Streaming application using > spark-submit to a cluster of mine consisting of a master and two worker > nodes. The application has been written in Scala, and build using Maven. > Importantly, the Maven build is configured to produce a fat JAR containing > all dependencies. Furthermore, the JAR has been distributed to all of > nodes. The streaming job has been submitted using the following command: > > bin/spark-submit --class topology.SimpleProcessingTopology --jars > /tmp/spark_streaming-1.0-SNAPSHOT.jar --master spark://10.0.0.8:7077 > --verbose /tmp/spark_streaming-1.0-SNAPSHOT.jar > /tmp/streaming-benchmark.properties > > where 10.0.0.8 is the IP address of the master node within the VNET. > > However, I keep getting the following exception while starting the > streaming application: > > Driver stacktrace: > at > org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1435) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1423) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1422) > at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) > at > org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1422) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802) > Caused by: java.lang.ClassNotFoundException: > topology.SimpleProcessingTopology$$anonfun$main$1$$anonfun$apply$1 > at java.net.URLClassLoader.findClass(URLClassLoader.java:381) > at java.lang.ClassLoader.loadClass(ClassLoader.java:424) > at java.lang.ClassLoader.loadClass(ClassLoader.java:357) > at java.lang.Class.forName0(Native Method) > at java.lang.Class.forName(Class.java:348) > at > org.apache.spark.serializer.JavaDeserializationStream$$anon$1.resolveClass(JavaSerializer.scala:67) > > I've checked the content of the JAR using jar tvf and as you can see in > the output below, it does contain the class in question. > > 1735 Wed Mar 01 12:29:20 UTC 2017 > topology/SimpleProcessingTopology$$anonfun$main$1.class > 702 Wed Mar 01 12:29:20 UTC 2017 topology/SimpleProcessingTopology.class > 2415 Wed Mar 01 12:29:20 UTC 2017 > topology/SimpleProcessingTopology$$anonfun$main$1$$anonfun$apply$1$$anonfun$apply$2.class > 2500 Wed Mar 01 12:29:20 UTC 2017 > topology/SimpleProcessingTopology$$anonfun$main$1$$anonfun$apply$1.class > 7045 Wed Mar 01 12:29:20 UTC 2017 topology/SimpleProcessingTopology$.class > > This exception has been caused due to the anonymous function of the > foreachPartition call: > > rdd.foreachPartition(partition => { > val outTopic = props.getString("application.simple.kafka.out.topic") > val producer = new KafkaProducer[Array[Byte],Array[Byte]](kafkaParams) > partition.foreach(record => { > val producerRecord = new ProducerRecord[Array[Byte], > Array[Byte]](outTopic, record.key(), record.value()) > producer.send(producerRecord) > }) > producer.close() > }) > > Unfortunately, I am not able to find the root cause of this since so far. > Hence, I would appreciate if anyone could help me out fixing this issue. > >