Thanks a lot! Just another question, how can I extract the minutes as a number?
I can use: .withColumn('duration_m',split(flight.duration,'h').getItem(1) to get strings like '10m' but how do I drop the charater "m" at the end? I can use substr(), but what's the function to get the length of the string so that I can do something like substr(1, len(...)-1)? On Thu, Apr 20, 2017 at 11:36 PM, Pushkar.Gujar <pushkarvgu...@gmail.com> wrote: > Can be as simple as - > > from pyspark.sql.functions import split > > flight.withColumn('hour',split(flight.duration,'h').getItem(0)) > > > Thank you, > *Pushkar Gujar* > > > On Thu, Apr 20, 2017 at 4:35 AM, Zeming Yu <zemin...@gmail.com> wrote: > >> Any examples? >> >> On 20 Apr. 2017 3:44 pm, "颜发才(Yan Facai)" <facai....@gmail.com> wrote: >> >>> How about using `withColumn` and UDF? >>> >>> example: >>> + https://gist.github.com/zoltanctoth/2deccd69e3d1cde1dd78 >>> <https://gist.github.com/zoltanctoth/2deccd69e3d1cde1dd78> >>> + https://ragrawal.wordpress.com/2015/10/02/spark-custom-udf-example/ >>> >>> >>> >>> On Mon, Apr 17, 2017 at 8:25 PM, Zeming Yu <zemin...@gmail.com> wrote: >>> >>>> I've got a dataframe with a column looking like this: >>>> >>>> display(flight.select("duration").show()) >>>> >>>> +--------+ >>>> |duration| >>>> +--------+ >>>> | 15h10m| >>>> | 17h0m| >>>> | 21h25m| >>>> | 14h30m| >>>> | 24h50m| >>>> | 26h10m| >>>> | 14h30m| >>>> | 23h5m| >>>> | 21h30m| >>>> | 11h50m| >>>> | 16h10m| >>>> | 15h15m| >>>> | 21h25m| >>>> | 14h25m| >>>> | 14h40m| >>>> | 16h0m| >>>> | 24h20m| >>>> | 14h30m| >>>> | 14h25m| >>>> | 14h30m| >>>> +--------+ >>>> only showing top 20 rows >>>> >>>> >>>> >>>> I need to extract the hour as a number and store it as an additional >>>> column within the same dataframe. What's the best way to do that? >>>> >>>> >>>> I tried the following, but it failed: >>>> >>>> import re >>>> def getHours(x): >>>> return re.match('([0-9]+(?=h))', x) >>>> temp = flight.select("duration").rdd.map(lambda >>>> x:getHours(x[0])).toDF() >>>> temp.select("duration").show() >>>> >>>> >>>> error message: >>>> >>>> >>>> ---------------------------------------------------------------------------Py4JJavaError >>>> Traceback (most recent call >>>> last)<ipython-input-89-1d5bec255302> in <module>() 2 def getHours(x): >>>> 3 return re.match('([0-9]+(?=h))', x)----> 4 temp = >>>> flight.select("duration").rdd.map(lambda x:getHours(x[0])).toDF() 5 >>>> temp.select("duration").show() >>>> C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\pyspark\sql\session.py >>>> in toDF(self, schema, sampleRatio) 55 [Row(name=u'Alice', >>>> age=1)] 56 """---> 57 return >>>> sparkSession.createDataFrame(self, schema, sampleRatio) 58 59 >>>> RDD.toDF = toDF >>>> C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\pyspark\sql\session.py >>>> in createDataFrame(self, data, schema, samplingRatio, verifySchema) >>>> 518 519 if isinstance(data, RDD):--> 520 rdd, >>>> schema = self._createFromRDD(data.map(prepare), schema, samplingRatio) >>>> 521 else: 522 rdd, schema = >>>> self._createFromLocal(map(prepare, data), schema) >>>> C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\pyspark\sql\session.py >>>> in _createFromRDD(self, rdd, schema, samplingRatio) 358 """ >>>> 359 if schema is None or isinstance(schema, (list, tuple)):--> 360 >>>> struct = self._inferSchema(rdd, samplingRatio) 361 >>>> converter = _create_converter(struct) 362 rdd = >>>> rdd.map(converter) >>>> C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\pyspark\sql\session.py >>>> in _inferSchema(self, rdd, samplingRatio) 329 :return: >>>> :class:`pyspark.sql.types.StructType` 330 """--> 331 >>>> first = rdd.first() 332 if not first: 333 raise >>>> ValueError("The first row in RDD is empty, " >>>> C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\pyspark\rdd.py >>>> in first(self) 1359 ValueError: RDD is empty 1360 >>>> """-> 1361 rs = self.take(1) 1362 if rs: 1363 >>>> return rs[0] >>>> C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\pyspark\rdd.py >>>> in take(self, num) 1341 1342 p = range(partsScanned, >>>> min(partsScanned + numPartsToTry, totalParts))-> 1343 res = >>>> self.context.runJob(self, takeUpToNumLeft, p) 1344 1345 >>>> items += res >>>> C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\pyspark\context.py >>>> in runJob(self, rdd, partitionFunc, partitions, allowLocal) 963 >>>> # SparkContext#runJob. 964 mappedRDD = >>>> rdd.mapPartitions(partitionFunc)--> 965 port = >>>> self._jvm.PythonRDD.runJob(self._jsc.sc(), mappedRDD._jrdd, partitions) >>>> 966 return list(_load_from_socket(port, >>>> mappedRDD._jrdd_deserializer)) 967 >>>> C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\lib\py4j-0.10.4-src.zip\py4j\java_gateway.py >>>> in __call__(self, *args) 1131 answer = >>>> self.gateway_client.send_command(command) 1132 return_value = >>>> get_return_value(-> 1133 answer, self.gateway_client, >>>> self.target_id, self.name) 1134 1135 for temp_arg in >>>> temp_args: >>>> C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\pyspark\sql\utils.py >>>> in deco(*a, **kw) 61 def deco(*a, **kw): 62 try:---> >>>> 63 return f(*a, **kw) 64 except >>>> py4j.protocol.Py4JJavaError as e: 65 s = >>>> e.java_exception.toString() >>>> C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\lib\py4j-0.10.4-src.zip\py4j\protocol.py >>>> in get_return_value(answer, gateway_client, target_id, name) 317 >>>> raise Py4JJavaError( 318 "An error >>>> occurred while calling {0}{1}{2}.\n".--> 319 >>>> format(target_id, ".", name), value) 320 else: 321 >>>> raise Py4JError( >>>> Py4JJavaError: An error occurred while calling >>>> z:org.apache.spark.api.python.PythonRDD.runJob. >>>> : org.apache.spark.SparkException: Job aborted due to stage failure: Task >>>> 0 in stage 75.0 failed 1 times, most recent failure: Lost task 0.0 in >>>> stage 75.0 (TID 1035, localhost, executor driver): >>>> org.apache.spark.api.python.PythonException: Traceback (most recent call >>>> last): >>>> File >>>> "C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\worker.py", >>>> line 174, in main >>>> File >>>> "C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\worker.py", >>>> line 169, in process >>>> File >>>> "C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\serializers.py", >>>> line 272, in dump_stream >>>> bytes = self.serializer.dumps(vs) >>>> File >>>> "C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\serializers.py", >>>> line 427, in dumps >>>> return pickle.dumps(obj, protocol) >>>> _pickle.PicklingError: Can't pickle <class '_sre.SRE_Match'>: attribute >>>> lookup SRE_Match on _sre failed >>>> >>>> at >>>> org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:193) >>>> at >>>> org.apache.spark.api.python.PythonRunner$$anon$1.<init>(PythonRDD.scala:234) >>>> at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152) >>>> at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63) >>>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) >>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) >>>> at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) >>>> at org.apache.spark.scheduler.Task.run(Task.scala:99) >>>> at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282) >>>> at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source) >>>> at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source) >>>> at java.lang.Thread.run(Unknown Source) >>>> >>>> Driver stacktrace: >>>> at >>>> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1435) >>>> at >>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1423) >>>> at >>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1422) >>>> at >>>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) >>>> at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) >>>> at >>>> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1422) >>>> at >>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802) >>>> at >>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802) >>>> at scala.Option.foreach(Option.scala:257) >>>> at >>>> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:802) >>>> at >>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1650) >>>> at >>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1605) >>>> at >>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1594) >>>> at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) >>>> at >>>> org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628) >>>> at org.apache.spark.SparkContext.runJob(SparkContext.scala:1918) >>>> at org.apache.spark.SparkContext.runJob(SparkContext.scala:1931) >>>> at org.apache.spark.SparkContext.runJob(SparkContext.scala:1944) >>>> at org.apache.spark.api.python.PythonRDD$.runJob(PythonRDD.scala:441) >>>> at org.apache.spark.api.python.PythonRDD.runJob(PythonRDD.scala) >>>> at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) >>>> at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source) >>>> at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source) >>>> at java.lang.reflect.Method.invoke(Unknown Source) >>>> at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) >>>> at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) >>>> at py4j.Gateway.invoke(Gateway.java:280) >>>> at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) >>>> at py4j.commands.CallCommand.execute(CallCommand.java:79) >>>> at py4j.GatewayConnection.run(GatewayConnection.java:214) >>>> at java.lang.Thread.run(Unknown Source) >>>> Caused by: org.apache.spark.api.python.PythonException: Traceback (most >>>> recent call last): >>>> File >>>> "C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\worker.py", >>>> line 174, in main >>>> File >>>> "C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\worker.py", >>>> line 169, in process >>>> File >>>> "C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\serializers.py", >>>> line 272, in dump_stream >>>> bytes = self.serializer.dumps(vs) >>>> File >>>> "C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\serializers.py", >>>> line 427, in dumps >>>> return pickle.dumps(obj, protocol) >>>> _pickle.PicklingError: Can't pickle <class '_sre.SRE_Match'>: attribute >>>> lookup SRE_Match on _sre failed >>>> >>>> at >>>> org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:193) >>>> at >>>> org.apache.spark.api.python.PythonRunner$$anon$1.<init>(PythonRDD.scala:234) >>>> at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152) >>>> at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63) >>>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) >>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) >>>> at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) >>>> at org.apache.spark.scheduler.Task.run(Task.scala:99) >>>> at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282) >>>> at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source) >>>> at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source) >>>> ... 1 more >>>> >>>> >>>> >>>> >>>> >>>> >>> >