Thanks a lot!

Just another question, how can I extract the minutes as a number?

I can use:
.withColumn('duration_m',split(flight.duration,'h').getItem(1)

to get strings like '10m'

but how do I drop the charater "m" at the end? I can use substr(), but
what's the function to get the length of the string so that I can do
something like substr(1, len(...)-1)?

On Thu, Apr 20, 2017 at 11:36 PM, Pushkar.Gujar <pushkarvgu...@gmail.com>
wrote:

> Can be as  simple as -
>
> from pyspark.sql.functions import split
>
> flight.withColumn('hour',split(flight.duration,'h').getItem(0))
>
>
> Thank you,
> *Pushkar Gujar*
>
>
> On Thu, Apr 20, 2017 at 4:35 AM, Zeming Yu <zemin...@gmail.com> wrote:
>
>> Any examples?
>>
>> On 20 Apr. 2017 3:44 pm, "颜发才(Yan Facai)" <facai....@gmail.com> wrote:
>>
>>> How about using `withColumn` and UDF?
>>>
>>> example:
>>> + https://gist.github.com/zoltanctoth/2deccd69e3d1cde1dd78
>>> <https://gist.github.com/zoltanctoth/2deccd69e3d1cde1dd78>
>>> + https://ragrawal.wordpress.com/2015/10/02/spark-custom-udf-example/
>>>
>>>
>>>
>>> On Mon, Apr 17, 2017 at 8:25 PM, Zeming Yu <zemin...@gmail.com> wrote:
>>>
>>>> I've got a dataframe with a column looking like this:
>>>>
>>>> display(flight.select("duration").show())
>>>>
>>>> +--------+
>>>> |duration|
>>>> +--------+
>>>> |  15h10m|
>>>> |   17h0m|
>>>> |  21h25m|
>>>> |  14h30m|
>>>> |  24h50m|
>>>> |  26h10m|
>>>> |  14h30m|
>>>> |   23h5m|
>>>> |  21h30m|
>>>> |  11h50m|
>>>> |  16h10m|
>>>> |  15h15m|
>>>> |  21h25m|
>>>> |  14h25m|
>>>> |  14h40m|
>>>> |   16h0m|
>>>> |  24h20m|
>>>> |  14h30m|
>>>> |  14h25m|
>>>> |  14h30m|
>>>> +--------+
>>>> only showing top 20 rows
>>>>
>>>>
>>>>
>>>> I need to extract the hour as a number and store it as an additional
>>>> column within the same dataframe. What's the best way to do that?
>>>>
>>>>
>>>> I tried the following, but it failed:
>>>>
>>>> import re
>>>> def getHours(x):
>>>>   return re.match('([0-9]+(?=h))', x)
>>>> temp = flight.select("duration").rdd.map(lambda
>>>> x:getHours(x[0])).toDF()
>>>> temp.select("duration").show()
>>>>
>>>>
>>>> error message:
>>>>
>>>>
>>>> ---------------------------------------------------------------------------Py4JJavaError
>>>>                              Traceback (most recent call 
>>>> last)<ipython-input-89-1d5bec255302> in <module>()      2 def getHours(x): 
>>>>      3   return re.match('([0-9]+(?=h))', x)----> 4 temp = 
>>>> flight.select("duration").rdd.map(lambda x:getHours(x[0])).toDF()      5 
>>>> temp.select("duration").show()
>>>> C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\pyspark\sql\session.py
>>>>  in toDF(self, schema, sampleRatio)     55         [Row(name=u'Alice', 
>>>> age=1)]     56         """---> 57         return 
>>>> sparkSession.createDataFrame(self, schema, sampleRatio)     58      59     
>>>> RDD.toDF = toDF
>>>> C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\pyspark\sql\session.py
>>>>  in createDataFrame(self, data, schema, samplingRatio, verifySchema)    
>>>> 518     519         if isinstance(data, RDD):--> 520             rdd, 
>>>> schema = self._createFromRDD(data.map(prepare), schema, samplingRatio)    
>>>> 521         else:    522             rdd, schema = 
>>>> self._createFromLocal(map(prepare, data), schema)
>>>> C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\pyspark\sql\session.py
>>>>  in _createFromRDD(self, rdd, schema, samplingRatio)    358         """    
>>>> 359         if schema is None or isinstance(schema, (list, tuple)):--> 360 
>>>>             struct = self._inferSchema(rdd, samplingRatio)    361          
>>>>    converter = _create_converter(struct)    362             rdd = 
>>>> rdd.map(converter)
>>>> C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\pyspark\sql\session.py
>>>>  in _inferSchema(self, rdd, samplingRatio)    329         :return: 
>>>> :class:`pyspark.sql.types.StructType`    330         """--> 331         
>>>> first = rdd.first()    332         if not first:    333             raise 
>>>> ValueError("The first row in RDD is empty, "
>>>> C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\pyspark\rdd.py
>>>>  in first(self)   1359         ValueError: RDD is empty   1360         
>>>> """-> 1361         rs = self.take(1)   1362         if rs:   1363          
>>>>    return rs[0]
>>>> C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\pyspark\rdd.py
>>>>  in take(self, num)   1341    1342             p = range(partsScanned, 
>>>> min(partsScanned + numPartsToTry, totalParts))-> 1343             res = 
>>>> self.context.runJob(self, takeUpToNumLeft, p)   1344    1345             
>>>> items += res
>>>> C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\pyspark\context.py
>>>>  in runJob(self, rdd, partitionFunc, partitions, allowLocal)    963        
>>>>  # SparkContext#runJob.    964         mappedRDD = 
>>>> rdd.mapPartitions(partitionFunc)--> 965         port = 
>>>> self._jvm.PythonRDD.runJob(self._jsc.sc(), mappedRDD._jrdd, partitions)    
>>>> 966         return list(_load_from_socket(port, 
>>>> mappedRDD._jrdd_deserializer))    967
>>>> C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\lib\py4j-0.10.4-src.zip\py4j\java_gateway.py
>>>>  in __call__(self, *args)   1131         answer = 
>>>> self.gateway_client.send_command(command)   1132         return_value = 
>>>> get_return_value(-> 1133             answer, self.gateway_client, 
>>>> self.target_id, self.name)   1134    1135         for temp_arg in 
>>>> temp_args:
>>>> C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\pyspark\sql\utils.py
>>>>  in deco(*a, **kw)     61     def deco(*a, **kw):     62         try:---> 
>>>> 63             return f(*a, **kw)     64         except 
>>>> py4j.protocol.Py4JJavaError as e:     65             s = 
>>>> e.java_exception.toString()
>>>> C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\lib\py4j-0.10.4-src.zip\py4j\protocol.py
>>>>  in get_return_value(answer, gateway_client, target_id, name)    317       
>>>>           raise Py4JJavaError(    318                     "An error 
>>>> occurred while calling {0}{1}{2}.\n".--> 319                     
>>>> format(target_id, ".", name), value)    320             else:    321       
>>>>           raise Py4JError(
>>>> Py4JJavaError: An error occurred while calling 
>>>> z:org.apache.spark.api.python.PythonRDD.runJob.
>>>> : org.apache.spark.SparkException: Job aborted due to stage failure: Task 
>>>> 0 in stage 75.0 failed 1 times, most recent failure: Lost task 0.0 in 
>>>> stage 75.0 (TID 1035, localhost, executor driver): 
>>>> org.apache.spark.api.python.PythonException: Traceback (most recent call 
>>>> last):
>>>>   File 
>>>> "C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\worker.py",
>>>>  line 174, in main
>>>>   File 
>>>> "C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\worker.py",
>>>>  line 169, in process
>>>>   File 
>>>> "C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\serializers.py",
>>>>  line 272, in dump_stream
>>>>     bytes = self.serializer.dumps(vs)
>>>>   File 
>>>> "C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\serializers.py",
>>>>  line 427, in dumps
>>>>     return pickle.dumps(obj, protocol)
>>>> _pickle.PicklingError: Can't pickle <class '_sre.SRE_Match'>: attribute 
>>>> lookup SRE_Match on _sre failed
>>>>
>>>>    at 
>>>> org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:193)
>>>>    at 
>>>> org.apache.spark.api.python.PythonRunner$$anon$1.<init>(PythonRDD.scala:234)
>>>>    at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152)
>>>>    at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
>>>>    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
>>>>    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
>>>>    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
>>>>    at org.apache.spark.scheduler.Task.run(Task.scala:99)
>>>>    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
>>>>    at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
>>>>    at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
>>>>    at java.lang.Thread.run(Unknown Source)
>>>>
>>>> Driver stacktrace:
>>>>    at 
>>>> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1435)
>>>>    at 
>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1423)
>>>>    at 
>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1422)
>>>>    at 
>>>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>>>>    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
>>>>    at 
>>>> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1422)
>>>>    at 
>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
>>>>    at 
>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
>>>>    at scala.Option.foreach(Option.scala:257)
>>>>    at 
>>>> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:802)
>>>>    at 
>>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1650)
>>>>    at 
>>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1605)
>>>>    at 
>>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1594)
>>>>    at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
>>>>    at 
>>>> org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628)
>>>>    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1918)
>>>>    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1931)
>>>>    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1944)
>>>>    at org.apache.spark.api.python.PythonRDD$.runJob(PythonRDD.scala:441)
>>>>    at org.apache.spark.api.python.PythonRDD.runJob(PythonRDD.scala)
>>>>    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
>>>>    at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
>>>>    at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
>>>>    at java.lang.reflect.Method.invoke(Unknown Source)
>>>>    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
>>>>    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
>>>>    at py4j.Gateway.invoke(Gateway.java:280)
>>>>    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
>>>>    at py4j.commands.CallCommand.execute(CallCommand.java:79)
>>>>    at py4j.GatewayConnection.run(GatewayConnection.java:214)
>>>>    at java.lang.Thread.run(Unknown Source)
>>>> Caused by: org.apache.spark.api.python.PythonException: Traceback (most 
>>>> recent call last):
>>>>   File 
>>>> "C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\worker.py",
>>>>  line 174, in main
>>>>   File 
>>>> "C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\worker.py",
>>>>  line 169, in process
>>>>   File 
>>>> "C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\serializers.py",
>>>>  line 272, in dump_stream
>>>>     bytes = self.serializer.dumps(vs)
>>>>   File 
>>>> "C:\spark-2.1.0-bin-hadoop2.7\spark-2.1.0-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\serializers.py",
>>>>  line 427, in dumps
>>>>     return pickle.dumps(obj, protocol)
>>>> _pickle.PicklingError: Can't pickle <class '_sre.SRE_Match'>: attribute 
>>>> lookup SRE_Match on _sre failed
>>>>
>>>>    at 
>>>> org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:193)
>>>>    at 
>>>> org.apache.spark.api.python.PythonRunner$$anon$1.<init>(PythonRDD.scala:234)
>>>>    at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152)
>>>>    at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
>>>>    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
>>>>    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
>>>>    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
>>>>    at org.apache.spark.scheduler.Task.run(Task.scala:99)
>>>>    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
>>>>    at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
>>>>    at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
>>>>    ... 1 more
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>
>

Reply via email to