Must be a bug.  This works for me
<https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/1023043053387187/908554720841389/2840265927289860/latest.html>
in
Spark 2.1.

On Tue, May 9, 2017 at 12:10 PM, Yang <teddyyyy...@gmail.com> wrote:

> somehow the schema check is here
>
> https://github.com/apache/spark/blob/master/sql/
> catalyst/src/main/scala/org/apache/spark/sql/catalyst/
> ScalaReflection.scala#L697-L750
>
> supposedly beans are to be handled, but it's not clear to me which line
> handles the type of beans. if that's clear, I could probably annotate my
> bean class properly
>
> On Tue, May 9, 2017 at 11:19 AM, Michael Armbrust <mich...@databricks.com>
> wrote:
>
>> I think you are supposed to set BeanProperty on a var as they do here
>> <https://github.com/apache/spark/blob/f830bb9170f6b853565d9dd30ca7418b93a54fe3/mllib/src/main/scala/org/apache/spark/mllib/tree/configuration/Strategy.scala#L71-L83>.
>> If you are using scala though I'd consider using the case class encoders.
>>
>> On Tue, May 9, 2017 at 12:21 AM, Yang <teddyyyy...@gmail.com> wrote:
>>
>>> I'm trying to use Encoders.bean() to create an encoder for my custom
>>> class, but it fails complaining about can't find the schema:
>>>
>>>
>>> class Person4 { @scala.beans.BeanProperty def setX(x:Int): Unit = {}
>>> @scala.beans.BeanProperty def getX():Int = {1} } val personEncoder =
>>> Encoders.bean[Person4](classOf[Person4]) scala> val person_rdd =sc.
>>> parallelize(Array( (new Person4(), 1), (new Person4(), 2) )) person_rdd:
>>> org.apache.spark.rdd.RDD[(Person4, Int)] = ParallelCollectionRDD[1] at
>>> parallelize at <con sole>:31 scala> sqlcontext.createDataFrame(per
>>> son_rdd) java.lang.UnsupportedOperationException: Schema for type
>>> Person4 is not supported at org.apache.spark.sql.catalyst.
>>> ScalaReflection$.schemaFor(ScalaReflection.scala:716) at org.apache.
>>> spark.sql.catalyst.ScalaReflection$$anonfun$schemaFor$2.apply(
>>> ScalaReflection.scala:71 2) at org.apache.spark.sql.catalyst.
>>> ScalaReflection$$anonfun$schemaFor$2.apply(ScalaReflection.scala:71 1)
>>> at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike
>>> .scala:234) at
>>>
>>>
>>> but if u look at the encoder's schema, it does know it:
>>> but the system does seem to understand the schema for "Person4":
>>>
>>>
>>> scala> personEncoder.schema
>>> res38: org.apache.spark.sql.types.StructType = 
>>> StructType(StructField(x,IntegerType,false))
>>>
>>>
>>
>

Reply via email to