Hi,

try this :

dataset.printSchema();   // see the output below

Dataset<Row> ds1 = dataset
                          .withWatermark("timestamp", "1 second")
                          .groupBy(

functions.window(*col("timestamp")*, "1 second", "1 second"),
                                   *col("source")*)
                          .agg(
                               functions.avg("D0").as("AVG_D0"),
                               functions.avg("I0").as("AVG_I0"))
                          .orderBy("window");


On Wed, 23 Sep 2020 at 22:51, Sergey Oboguev <obog...@gmail.com> wrote:

> Hi,
>
> I am trying to aggregate Spark time-stamped structured stream to get
> per-device (source) averages for every second of incoming data.
>
> dataset.printSchema();   // see the output below
>
> Dataset<Row> ds1 = dataset
>                           .withWatermark("timestamp", "1 second")
>                           .groupBy(
>                                    functions.window(dataset.col("timestamp"), 
> "1 second", "1 second"),
>                                    dataset.col("source"))
>                           .agg(
>                                functions.avg("D0").as("AVG_D0"),
>                                functions.avg("I0").as("AVG_I0"))
>                           .orderBy("window");
>
> StreamingQuery query = ds1.writeStream()
>                           .outputMode(OutputMode.Append())
>                           .format("console")
>                           .option("truncate", "false")
>                           .option("numRows", Integer.MAX_VALUE)
>                           .start();
>
> query.awaitTermination();
>
> I am using Spark 2.4.6.
>
> According to
>
> https://spark.apache.org/docs/2.4.6/structured-streaming-programming-guide.html#output-modes
>
> https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#output-modes
> the above construct should work fine.
>
> Yet I am getting an exception in the query start():
>
> 11:05:27.282 [main] ERROR my.sparkbench.example.Example - Exception
> org.apache.spark.sql.AnalysisException: *Append output mode not supported 
> when there are streaming aggregations on streaming DataFrames/DataSets 
> without watermark*;;
> Sort [window#44 ASC NULLS FIRST], true
> +- Aggregate [window#71, source#0], [window#71 AS window#44, source#0, 
> avg(D0#12) AS AVG_D0#68, avg(I0#2L) AS AVG_I0#70]
>    +- Filter isnotnull(timestamp#1)
>       +- Project [named_struct(start, precisetimestampconversion(((((CASE 
> WHEN (cast(CEIL((cast((precisetimestampconversion(timestamp#1, TimestampType, 
> LongType) - 0) as double) / cast(1000000 as double))) as double) = 
> (cast((precisetimestampconversion(timestamp#1, TimestampType, LongType) - 0) 
> as double) / cast(1000000 as double))) THEN 
> (CEIL((cast((precisetimestampconversion(timestamp#1, TimestampType, LongType) 
> - 0) as double) / cast(1000000 as double))) + cast(1 as bigint)) ELSE 
> CEIL((cast((precisetimestampconversion(timestamp#1, TimestampType, LongType) 
> - 0) as double) / cast(1000000 as double))) END + cast(0 as bigint)) - cast(1 
> as bigint)) * 1000000) + 0), LongType, TimestampType), end, 
> precisetimestampconversion((((((CASE WHEN 
> (cast(CEIL((cast((precisetimestampconversion(timestamp#1, TimestampType, 
> LongType) - 0) as double) / cast(1000000 as double))) as double) = 
> (cast((precisetimestampconversion(timestamp#1, TimestampType, LongType) - 0) 
> as double) / cast(1000000 as double))) THEN 
> (CEIL((cast((precisetimestampconversion(timestamp#1, TimestampType, LongType) 
> - 0) as double) / cast(1000000 as double))) + cast(1 as bigint)) ELSE 
> CEIL((cast((precisetimestampconversion(timestamp#1, TimestampType, LongType) 
> - 0) as double) / cast(1000000 as double))) END + cast(0 as bigint)) - cast(1 
> as bigint)) * 1000000) + 0) + 1000000), LongType, TimestampType)) AS 
> window#71, source#0, timestamp#1-T1000ms, I0#2L, I1#3L, I2#4L, I3#5L, I4#6L, 
> I5#7L, I6#8L, I7#9L, I8#10L, I9#11L, D0#12, D1#13, D2#14, D3#15, D4#16, 
> D5#17, D6#18, D7#19, D8#20, D9#21]
>          +- EventTimeWatermark timestamp#1: timestamp, interval 1 seconds
>             +- StreamingRelationV2 
> my.sparkbench.datastreamreader.MyStreamingSource@6897a4a, 
> my.sparkbench.datastreamreader.MyStreamingSource, [source#0, timestamp#1, 
> I0#2L, I1#3L, I2#4L, I3#5L, I4#6L, I5#7L, I6#8L, I7#9L, I8#10L, I9#11L, 
> D0#12, D1#13, D2#14, D3#15, D4#16, D5#17, D6#18, D7#19, D8#20, D9#21]
>
>     at 
> org.apache.spark.sql.catalyst.analysis.UnsupportedOperationChecker$.org$apache$spark$sql$catalyst$analysis$UnsupportedOperationChecker$$throwError(UnsupportedOperationChecker.scala:389)
>     at 
> org.apache.spark.sql.catalyst.analysis.UnsupportedOperationChecker$.checkForStreaming(UnsupportedOperationChecker.scala:111)
>     at 
> org.apache.spark.sql.streaming.StreamingQueryManager.createQuery(StreamingQueryManager.scala:256)
>     at 
> org.apache.spark.sql.streaming.StreamingQueryManager.startQuery(StreamingQueryManager.scala:322)
>     at 
> org.apache.spark.sql.streaming.DataStreamWriter.start(DataStreamWriter.scala:325)
>     at my.sparkbench.example.Example.streamGroupByResult(Example.java:113)
>     at my.sparkbench.example.Example.exec_main(Example.java:76)
>     at my.sparkbench.example.Example.do_main(Example.java:42)
>     at my.sparkbench.example.Example.main(Example.java:34)
>
> even though there is a watermark on the stream.
>
> Schema printout looks fine:
>
> root
>  |-- source: string (nullable = false)
>  |-- timestamp: timestamp (nullable = false)
>  |-- I0: long (nullable = false)
>  |-- I1: long (nullable = false)
>  |-- I2: long (nullable = false)
>  |-- I3: long (nullable = false)
>  |-- I4: long (nullable = false)
>  |-- I5: long (nullable = false)
>  |-- I6: long (nullable = false)
>  |-- I7: long (nullable = false)
>  |-- I8: long (nullable = false)
>  |-- I9: long (nullable = false)
>  |-- D0: double (nullable = false)
>  |-- D1: double (nullable = false)
>  |-- D2: double (nullable = false)
>  |-- D3: double (nullable = false)
>  |-- D4: double (nullable = false)
>  |-- D5: double (nullable = false)
>  |-- D6: double (nullable = false)
>  |-- D7: double (nullable = false)
>  |-- D8: double (nullable = false)
>  |-- D9: double (nullable = false)
>
> Actual data looks fine too. If I feed it to
>
> dataset.writeStream().format("console").option("truncate", 
> "false").outputMode(OutputMode.Append()).start();
>
> then I am getting output
>
> -------------------------------------------
> Batch: 0
> -------------------------------------------
> +--------+---------------------+---+---+---+---+---+---+---+---+---+---+----+----+----+----+----+----+----+----+----+----+
> |source  |timestamp            |I0 |I1 |I2 |I3 |I4 |I5 |I6 |I7 |I8 |I9 |D0  
> |D1  |D2  |D3  |D4  |D5  |D6  |D7  |D8  |D9  |
> +--------+---------------------+---+---+---+---+---+---+---+---+---+---+----+----+----+----+----+----+----+----+----+----+
> |DEV-0001|1970-01-01 00:01:40  |10 |10 |10 |10 |10 |10 |10 |10 |10 |10 
> |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|
> |DEV-0002|1970-01-01 00:01:40  |10 |10 |10 |10 |10 |10 |10 |10 |10 |10 
> |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|
> |DEV-0003|1970-01-01 00:01:40  |10 |10 |10 |10 |10 |10 |10 |10 |10 |10 
> |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|
> |DEV-0004|1970-01-01 00:01:40  |10 |10 |10 |10 |10 |10 |10 |10 |10 |10 
> |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|
> |DEV-0001|1970-01-01 00:01:40.5|10 |10 |10 |10 |10 |10 |10 |10 |10 |10 
> |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|
> |DEV-0002|1970-01-01 00:01:40.5|10 |10 |10 |10 |10 |10 |10 |10 |10 |10 
> |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|
> |DEV-0003|1970-01-01 00:01:40.5|10 |10 |10 |10 |10 |10 |10 |10 |10 |10 
> |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|
> |DEV-0004|1970-01-01 00:01:40.5|10 |10 |10 |10 |10 |10 |10 |10 |10 |10 
> |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|
> |DEV-0001|1970-01-01 00:01:41  |10 |10 |10 |10 |10 |10 |10 |10 |10 |10 
> |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|
> |DEV-0002|1970-01-01 00:01:41  |10 |10 |10 |10 |10 |10 |10 |10 |10 |10 
> |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|
> |DEV-0003|1970-01-01 00:01:41  |10 |10 |10 |10 |10 |10 |10 |10 |10 |10 
> |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|
> |DEV-0004|1970-01-01 00:01:41  |10 |10 |10 |10 |10 |10 |10 |10 |10 |10 
> |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|
> |DEV-0001|1970-01-01 00:01:41.5|10 |10 |10 |10 |10 |10 |10 |10 |10 |10 
> |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|
> |DEV-0002|1970-01-01 00:01:41.5|10 |10 |10 |10 |10 |10 |10 |10 |10 |10 
> |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|
> |DEV-0003|1970-01-01 00:01:41.5|10 |10 |10 |10 |10 |10 |10 |10 |10 |10 
> |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|
> |DEV-0004|1970-01-01 00:01:41.5|10 |10 |10 |10 |10 |10 |10 |10 |10 |10 
> |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|
> |DEV-0001|1970-01-01 00:01:42  |10 |10 |10 |10 |10 |10 |10 |10 |10 |10 
> |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|
> |DEV-0002|1970-01-01 00:01:42  |10 |10 |10 |10 |10 |10 |10 |10 |10 |10 
> |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|
> |DEV-0003|1970-01-01 00:01:42  |10 |10 |10 |10 |10 |10 |10 |10 |10 |10 
> |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|
> |DEV-0004|1970-01-01 00:01:42  |10 |10 |10 |10 |10 |10 |10 |10 |10 |10 
> |10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|10.0|
> +--------+---------------------+---+---+---+---+---+---+---+---+---+---+----+----+----+----+----+----+----+----+----+----+
> only showing top 20 rows
>
> and then follow-up batches of a similar look.
>
> There is no exception if I use COMPLETE output mode, but then old results
> (from the start of the timeline) are reported in every batch and that’s not
> what I want. I want only new query result records to be reported. Thus I
> want the APPEND mode – but it causes an exception.
>
> Why is the exception and how can I make it work?
>
> Tiny project that isolates the problem is here:
> https://github.com/oboguev/SparkQuestion
>
> Thanks for advice.
>

Reply via email to