hadoop_conf.set("fs.s3a.multipart.size", 104857600L) .set only allows string values. Its throwing invalid syntax.
I tried following also. But issue not fixed. hadoop_conf.setLong("fs.s3a.multipart.size", 104857600) Thanks On Thu, Oct 15, 2020, 7:22 PM Hariharan <hariharan...@gmail.com> wrote: > fs.s3a.multipart.size needs to be a long value, not a string, so you > will need to use > > hadoop_conf.set("fs.s3a.multipart.size", 104857600L) > > ~ Hariharan > > On Thu, Oct 15, 2020 at 6:32 PM Devi P V <devipvina...@gmail.com> wrote: > > > > Hi All, > > > > I am trying to write a pyspark dataframe into KMS encrypted S3 bucket.I > am using spark-3.0.1-bin-hadoop3.2. I have given all the possible > configurations as shown below. > > > > sc = spark.sparkContext > > hadoop_conf = sc._jsc.hadoopConfiguration() > > hadoop_conf.set("fs.s3a.access.key", "XXX") > > hadoop_conf.set("fs.s3a.secret.key","XXX") > > hadoop_conf.set("fs.s3a.multipart.size", "104857600") > > hadoop_conf.set("fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem") > > hadoop_conf.setBoolean("fs.s3a.sse.enabled",True) > > hadoop_conf.set("fs.s3a.server-side-encryption-algorithm", "SSE-KMS") > > hadoop_conf.set("fs.s3a.sse.kms.keyId", "XXXX") > > > > > > > > df = spark.createDataFrame( > > [ > > (1, 'one'), > > (2, 'two'), > > ], > > ['id', 'txt'] > > ) > > df.write.csv('s3a://bucket_name/test_data',header='true') > > > > Getting exception > > > > : java.lang.IllegalArgumentException > > at > java.util.concurrent.ThreadPoolExecutor.<init>(ThreadPoolExecutor.java:1314) > > at > java.util.concurrent.ThreadPoolExecutor.<init>(ThreadPoolExecutor.java:1237) > > at > org.apache.hadoop.fs.s3a.S3AFileSystem.initialize(S3AFileSystem.java:274) > > at > org.apache.hadoop.fs.FileSystem.createFileSystem(FileSystem.java:3303) > > at > org.apache.hadoop.fs.FileSystem.access$200(FileSystem.java:124) > > at > org.apache.hadoop.fs.FileSystem$Cache.getInternal(FileSystem.java:3352) > > at > org.apache.hadoop.fs.FileSystem$Cache.get(FileSystem.java:3320) > > at org.apache.hadoop.fs.FileSystem.get(FileSystem.java:479) > > at org.apache.hadoop.fs.Path.getFileSystem(Path.java:361) > > at > org.apache.spark.sql.execution.datasources.DataSource.planForWritingFileFormat(DataSource.scala:459) > > at > org.apache.spark.sql.execution.datasources.DataSource.planForWriting(DataSource.scala:559) > > at > org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:415) > > at > org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:399) > > at > org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:288) > > at > org.apache.spark.sql.DataFrameWriter.csv(DataFrameWriter.scala:953) > > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > > at > sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) > > at > sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) > > at java.lang.reflect.Method.invoke(Method.java:498) > > at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) > > at > py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) > > at py4j.Gateway.invoke(Gateway.java:282) > > at > py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) > > at py4j.commands.CallCommand.execute(CallCommand.java:79) > > at py4j.GatewayConnection.run(GatewayConnection.java:238) > > at java.lang.Thread.run(Thread.java:748) > > > > Any idea to resolve this issue ? > > > > Thanks >