Hi,Leo,

I think java.lang.OutOfMemoryError: Java heap space is caused by java
memory problem, no connection with spark.
Just try -Xmx: more memory when start jvm


2013/12/17 [email protected] <[email protected]>

>   hello everyone,
> I have a problem when I run the wordcount example. I read data from hdfs ,
> its almost 7G.
> I haven't seen the info from the web ui or sparkhome/work . This is the
> console info :
> .....
>  13/12/16 19:48:02 INFO LocalTaskSetManager: Size of task 52 is 1834 bytes
> 13/12/16 19:48:02 INFO LocalScheduler: Running 52
> 13/12/16 19:48:02 INFO BlockFetcherIterator$BasicBlockFetcherIterator:
> Getting 52 non-zero-bytes blocks out of 52 blocks
> 13/12/16 19:48:02 INFO BlockFetcherIterator$BasicBlockFetcherIterator:
> Started 0 remote gets in  7 ms
> 13/12/16 19:48:09 INFO LocalTaskSetManager: Loss was due to
> java.lang.OutOfMemoryError
> java.lang.OutOfMemoryError: Java heap space
>         at java.util.Arrays.copyOf(Arrays.java:2271)
>         at
> java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:113)
>         at
> java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93)
>         at
> java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:140)
>         at
> java.io.ObjectOutputStream$BlockDataOutputStream.drain(ObjectOutputStream.java:1857)
>         at
> java.io.ObjectOutputStream$BlockDataOutputStream.setBlockDataMode(ObjectOutputStream.java:1766)
>         at
> java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1185)
>         at
> java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:346)
>         at
> org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:27)
>         at
> org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:47)
>         at
> org.apache.spark.scheduler.local.LocalScheduler.runTask(LocalScheduler.scala:204)
>         at
> org.apache.spark.scheduler.local.LocalActor$$anonfun$launchTask$1$$anon$1.run(LocalScheduler.scala:68)
>         at
> java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471)
>         at
> java.util.concurrent.FutureTask$Sync.innerRun(FutureTask.java:334)
>         at java.util.concurrent.FutureTask.run(FutureTask.java:166)
>         at
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1110)
>         at
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:603)
>         at java.lang.Thread.run(Thread.java:722)
> 13/12/16 19:48:09 INFO LocalScheduler: Remove TaskSet 0.0 from pool
> 13/12/16 19:48:09 INFO DAGScheduler: Failed to run collect at <console>:17
> org.apache.spark.SparkException: Job failed: Task 0.0:0 failed more than 4
> times; aborting job java.lang.OutOfMemoryError: Java heap space
>         at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:760)
>         at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:758)
>         at
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:60)
>         at
> scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
>         at
> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:758)
>         at
> org.apache.spark.scheduler.DAGScheduler.processEvent(DAGScheduler.scala:379)
>         at org.apache.spark.scheduler.DAGScheduler.org
> $apache$spark$scheduler$DAGScheduler$$run(DAGScheduler.scala:441)
>         at
> org.apache.spark.scheduler.DAGScheduler$$anon$1.run(DAGScheduler.scala:149)
>
> this is my spark-env.sh :
>
>  export
> SPARK_HOME=/home/lh1/spark_hadoopapp/spark-0.8.0-hadoop2.0.0-cdh4.2.1
> export JAVA_HOME=/home/lh1/app/jdk1.7.0
> export SCALA_HOME=/home/lh1/sparkapp/scala-2.9.3
>  export SPARK_WORKER_CORES=2
> export SPARK_WORKER_MEMORY=1024m
> export SPARK_WORKER_INSTANCES=2
> export SPARK_DAEMON_JAVA_OPTS=9000m
>
> I just started to use Spark , so  can you give me some suggestions ?
>
> Thanks .
>
> Leo
> ------------------------------
>
> ------------------------------
>  [email protected]
>

Reply via email to