You can also check logs in work directory. I feel spark receiver is for
some reason is unable to connect to KafkaStream specified. One quick
diagnostic can be done by using a socketStream, and stream can be simply
created(faked) by net cat utility in unix.


On Thu, Jan 23, 2014 at 3:50 PM, Sourav Chandra <
[email protected]> wrote:

> Hi Anita,
>
> It did not help.
>
> If I use newStream.print() it shows the RDDs in the stream.
> Also in newStream.foreachRDD(rdd => {
>   rdd.count()  // prints counts
>   println("rdd.collect.toList") // prints rdd list
> })
>
> But
> newStream.foreachRDD(rdd => {
>       rdd.foreach({
>         case (value, count) => {
>           println("##########################################")
>           println("value --> " + value + " with count --> " + count)
>           println("##########################################")
>         }
>       })
>     })
> does not print anything
>
> Thanks,
> Sourav
>
>
> On Thu, Jan 23, 2014 at 3:35 PM, Anita Tailor <[email protected]>wrote:
>
>> Hi Sourav,
>>
>> From "foreach not working" you mean Job is not getting scheduled at batch
>> interval?
>> I came across similar issue with standalone mode. You can try increasing
>> your batch interval.
>>
>> I increase  the priority of RecurringTimer
>> (incubator-spark/streaming/src/main/scala/org/apache/spark/streamingutil/RecurringTimer.scala)
>> thread to get it working
>>
>> Regards
>>  Anita
>>
>>
>>
>>
>> On 23 January 2014 14:31, Sourav Chandra 
>> <[email protected]>wrote:
>>
>>> Hi,
>>>
>>> I am using spark streaming along with kafka dstream. and running the
>>> application against standalone cluster
>>>
>>> Spark version =>
>>> https://github.com/apache/incubator-spark/tree/branch-0.9
>>>
>>> It seems  after transformation, when i o foreachRDD, its not working.
>>>
>>> code snippet is below :
>>> ---------------------------------------------------------------
>>> val ssc = new StreamingContext(...)
>>> val stream = KafkaUtils.createStream(...)
>>> val processedStream = stream.flatMap(...)
>>> val newStream = processedStream.map(x => (x, 1L)).reduceByKeyAndWindow(_
>>> + _, _ - _, Seconds(1), Seconds(1), 2)
>>> newStream.foreachRDD(rdd => {
>>>       rdd.foreach({
>>>         case (value, count) => {
>>>           println("##########################################")
>>>           println("value --> " + value + " with count --> " + count)
>>>           println("##########################################")
>>>         }
>>>       })
>>>     })
>>>
>>> ---------------------------------------------------------------
>>>
>>> If I run the application locally (local instead of spark://), it is
>>> working
>>>
>>> Can you suggest what is going on here?
>>>
>>> --
>>>
>>> Sourav Chandra
>>>
>>> Senior Software Engineer
>>>
>>> · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
>>>
>>> [email protected]
>>>
>>> o: +91 80 4121 8723
>>>
>>> m: +91 988 699 3746
>>>
>>> skype: sourav.chandra
>>>
>>> Livestream
>>>
>>> "Ajmera Summit", First Floor, #3/D, 68 Ward, 3rd Cross, 7th C Main, 3rd
>>> Block, Koramangala Industrial Area,
>>>
>>> Bangalore 560034
>>>
>>> www.livestream.com
>>>
>>
>>
>>
>>
>
>
> --
>
> Sourav Chandra
>
> Senior Software Engineer
>
> · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
>
> [email protected]
>
> o: +91 80 4121 8723
>
> m: +91 988 699 3746
>
> skype: sourav.chandra
>
> Livestream
>
> "Ajmera Summit", First Floor, #3/D, 68 Ward, 3rd Cross, 7th C Main, 3rd
> Block, Koramangala Industrial Area,
>
> Bangalore 560034
>
> www.livestream.com
>



-- 
Prashant

Reply via email to