Grepping for StreamThread would be useful, though some logs will be over
multiple lines.
We need to see which partitions have been assigned to the other
instances/threads, it will look something like:

2017-09-14 10:04:22 INFO  StreamThread:160 - stream-thread
[myKafka-kafkareplica101Sept08-cb392e38-1e78-4ab6-9143-eb6bc6ec8219-StreamThread-1]
at state PARTITIONS_REVOKED: new partitions [MYTOPIC05SEPT-24,
MYTOPIC05SEPT-0] assigned at the end of consumer rebalance.
        assigned active tasks: [0_0, 0_24]
        assigned standby tasks: []
        current suspended active tasks: [0_0, 0_1, 0_2, 0_3, 0_4, 0_5,
0_6, 0_7, 0_8, 0_9, 0_10, 0_11, 0_12, 0_13, 0_14, 0_15, 0_16, 0_17,
0_18, 0_19, 0_20, 0_21, 0_22, 0_23, 0_24, 0_25, 0_26, 0_27, 0_28,
0_29, 0_30, 0_31, 0_32, 0_33, 0_34, 0_35]
        current suspended standby tasks: []
        previous active tasks: [0_0, 0_1, 0_2, 0_3, 0_4, 0_5, 0_6,
0_7, 0_8, 0_9, 0_10, 0_11, 0_12, 0_13, 0_14, 0_15, 0_16, 0_17, 0_18,
0_19, 0_20, 0_21, 0_22, 0_23, 0_24, 0_25, 0_26, 0_27, 0_28, 0_29,
0_30, 0_31, 0_32, 0_33, 0_34, 0_35]


I also noticed that one of your instances looks like it is configured with
12 threads, while the others have 4 - is that correct?

On Fri, 15 Sep 2017 at 10:27 dev loper <spark...@gmail.com> wrote:

> Hi Damian,
>
> I do have the logs for the other application. But its kind of huge since it
> is continuously processing . Do you want me to grep anything specific and
> share it with you ?
>
> Thanks
> Dev
>
> On Fri, Sep 15, 2017 at 2:31 PM, Damian Guy <damian....@gmail.com> wrote:
>
> > Hi,
> >
> > Do you have the logs for the other instance?
> >
> > Thanks,
> > Damian
> >
> > On Fri, 15 Sep 2017 at 07:19 dev loper <spark...@gmail.com> wrote:
> >
> > > Dear Kafka Users,
> > >
> > > I am fairly new to Kafka Streams . I have deployed two instances of
> Kafka
> > > 0.11 brokers on AWS M3.Xlarge insatnces. I have created a topic with 36
> > > partitions .and speperate application writes to this topic and it
> > produces
> > > records at the rate of 10000 messages per second. I have threes
> instances
> > > of AWS  M4.xlarge instance  where my Kafka streams application is
> running
> > > which consumes these messages produced by the other application. The
> > > application  starts up fine working fine and its processing messages on
> > the
> > > first instance,  but when I start the same application on other
> instances
> > > it is not starting even though the process is alive it is not
> processing
> > > messages.Also I could see the other instances takes a long time to
> start
> > .
> > >
> > > Apart from first instance,  other instances I could see the consumer
> > > getting added and removed repeatedly and I couldn't see any message
> > > processing at all . I have attached the detailed logs where this
> behavior
> > > is observed.
> > >
> > > Consumer is getting started with below log in these instances and
> getting
> > > stopped with below log (* detailed logs attached *)
> > >
> > > INFO  | 21:59:30 | consumer.ConsumerConfig (AbstractConfig.java:223) -
> > > ConsumerConfig values:
> > >     auto.commit.interval.ms = 5000
> > >     auto.offset.reset = latest
> > >     bootstrap.servers = [l-mykafkainstancekafka5101:9092,
> > > l-mykafkainstancekafka5102:9092]
> > >     check.crcs = true
> > >     client.id =
> > >     connections.max.idle.ms = 540000
> > >     enable.auto.commit = false
> > >     exclude.internal.topics = true
> > >     fetch.max.bytes = 52428800
> > >     fetch.max.wait.ms = 500
> > >     fetch.min.bytes = 1
> > >     group.id = myKafka-kafkareplica101Sept08
> > >     heartbeat.interval.ms = 3000
> > >     interceptor.classes = null
> > >     internal.leave.group.on.close = true
> > >     isolation.level = read_uncommitted
> > >     key.deserializer = class mx.july.jmx.proximity.kafka.KafkaKryoCodec
> > >     max.partition.fetch.bytes = 1048576
> > >     max.poll.interval.ms = 300000
> > >     max.poll.records = 500
> > >     metadata.max.age.ms = 300000
> > >     metric.reporters = []
> > >     metrics.num.samples = 2
> > >     metrics.recording.level = INFO
> > >     metrics.sample.window.ms = 30000
> > >     partition.assignment.strategy = [class
> > > org.apache.kafka.clients.consumer.RangeAssignor]
> > >     receive.buffer.bytes = 65536
> > >     reconnect.backoff.max.ms = 1000
> > >     reconnect.backoff.ms = 50
> > >     request.timeout.ms = 305000
> > >     retry.backoff.ms = 100
> > >     sasl.jaas.config = null
> > >     sasl.kerberos.kinit.cmd = /usr/bin/kinit
> > >     sasl.kerberos.min.time.before.relogin = 60000
> > >     sasl.kerberos.service.name = null
> > >     sasl.kerberos.ticket.renew.jitter = 0.05
> > >     sasl.kerberos.ticket.renew.window.factor = 0.8
> > >     sasl.mechanism = GSSAPI
> > >     security.protocol = PLAINTEXT
> > >     send.buffer.bytes = 131072
> > >     session.timeout.ms = 10000
> > >     ssl.cipher.suites = null
> > >     ssl.enabled.protocols = [TLSv1.2, TLSv1.1, TLSv1]
> > >     ssl.endpoint.identification.algorithm = null
> > >     ssl.key.password = null
> > >     ssl.keymanager.algorithm = SunX509
> > >     ssl.keystore.location = null
> > >     ssl.keystore.password = null
> > >     ssl.keystore.type = JKS
> > >     ssl.protocol = TLS
> > >     ssl.provider = null
> > >     ssl.secure.random.implementation = null
> > >     ssl.trustmanager.algorithm = PKIX
> > >     ssl.truststore.location = null
> > >     ssl.truststore.password = null
> > >     ssl.truststore.type = JKS
> > >     value.deserializer = class my.dev.MessageUpdateCodec
> > >
> > >
> > > DEBUG | 21:59:30 | consumer.KafkaConsumer (KafkaConsumer.java:1617) -
> The
> > > Kafka consumer has closed. and the whole process repeats.
> > >
> > >
> > >
> > > Below you can find my startup code for kafkastreams and the parameters
> > > which I have configured for starting the kafkastreams application .
> > >
> > >         private static Properties settings = new Properties();
> > >         settings.put(StreamsConfig.APPLICATION_ID_CONFIG,
> > > "mykafkastreamsapplication");
> > >         settings.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG,"latest");
> > >         settings.put(ConsumerConfig.HEARTBEAT_INTERVAL_MS_CONFIG,"
> > 10000");
> > >         settings.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG,"30000");
> > >
> > > settings.put(ConsumerConfig.MAX_POLL_INTERVAL_MS_CONFIG,
> > Integer.MAX_VALUE);
> > >         settings.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, "10000");
> > >
> > > settings.put(ConsumerConfig.CONNECTIONS_MAX_IDLE_MS_CONFIG,"60000");
> > >
> > >         KStreamBuilder builder = new KStreamBuilder();
> > >         KafkaStreams streams = new KafkaStreams(builder, settings);
> > >         builder.addSource(.....
> > >          .addProcessor  .............
> > >          .addProcessor  ........
> > >
> > >
> > > .addStateStore(...................).persistent().build(),"myprocessor")
> > >          .addSink ..............
> > >          . addSink ..............
> > >           streams.start();
> > >
> > > and I am using a Simple  processor to process my logic ..
> > >
> > > public class InfoProcessor extends AbstractProcessor<Key, Update> {
> > > private static Logger logger = Logger.getLogger(InfoProcessor.class);
> > > private ProcessorContext context;
> > > private KeyValueStore<Key, Info> infoStore;
> > >
> > > @Override
> > > @SuppressWarnings("unchecked")
> > > public void init(ProcessorContext context) {
> > >     this.context = context;
> > >     this.context.schedule(Constants.BATCH_DURATION_SECONDS * 1000);
> > >     infoStore = (KeyValueStore<Key, Info>)
> > > context.getStateStore("InfoStore");
> > > }
> > >
> > > @Override
> > > public void process(Key key, Update update) {
> > >     try {
> > >         if (key != null && update != null) {
> > >             Info info = infoStore.get(key);
> > >             // merge logic
> > >             infoStore.put(key, info);
> > >         }
> > >
> > >     } catch (Exception e) {
> > >         logger.error(e.getMessage(), e);
> > >     } finally {
> > >     }
> > >     context.commit();
> > > }
> > >
> > > @Override
> > > public void punctuate(long timestamp) {
> > >     try {
> > >         KeyValueIterator<Key, Info> iter = this.infoStore.all();
> > >         while (iter.hasNext()) {
> > >             // processing logic
> > >
> > >         }
> > >         iter.close();
> > >         context.commit();
> > >     } catch (Exception e) {
> > >         logger.error(e.getMessage(), e);
> > >     }
> > > }
> > >
> > >
> > >
> > >
> > >
> >
>

Reply via email to